Explanation:
<h2>The number of energy levels (n) increases, so there is a greater distance between the nucleus and the outermost orbital.</h2>

An atom of this isotope contains 5 protons and 10-5=5 neutrons.

The answer is A. 1.67 × 10⁻²⁶ kg.
Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.
Answer:
Thermal decomposition or cracking
Explanation:
Petroleum is a mixture of hydrocarbons which are usually formed naturally. Petroleum undergo a host of chemical reactions. One of such is thermal decomposition or cracking.
Cracking is used in the petroleum industry to covert heavy fractions to more useful lighter ones.
When petroleum is subjected to high temperature and pressure, and in the presence of catalyst, the long chain type of petroleum will decompose into more useful smaller and lighter molecules.
Example is given below:
C₁₅H₃₂ → C₈H₁₈ + C₃H₆ + 2C₂H₄