This question is incomplete because the options are missing; here is the complete question:
A runner starts at point A, runs around a 1-mile track, and finishes the run back at point A. Which of the following statements is true?
A. The runner's displacement is 1 mile.
B. The runner's displacement is zero.
C. The distance the runner covered is zero.
D. The runner's speed was zero.
The answer to this question is B. The runner's displacement is zero
Explanation:
Displacement always implies a change of position; this means an object or individual moves from point A to point B, and therefore the original position is different from the final position. Additionally, in displacement, other related factors such as the total distance the body moved and the direction of movement. In the case presented, it can be concluded there was no displacement or the displacement is zero because even when the runner moved and ran two miles, he returned to the initial position, and without a change in the position, there is no displacement.
Answer:
Solids
Is this what your looking for, It might tell you the answer?
Water expands when it freezes (that's why you should never put closed, fully filled water bottles in the freezer !)
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4