Recall the equation for magnetic force:
F = qv x B *x is cross product, not separate variable!
If the magnetic field points towards N and you throw E, then the magnetic force would point up, or out of the page. Use the right-hand rule. You point your finger towards the direction of the object, and curl your finger to the magnetic field. Your thumb is the direction of the magnetic force.
Hope this helps!
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
Answer:
1. Energy = 2880 Joules.
2. Energy = 60 Joules.
3. Quantity of charge = 120 Coulombs.
Explanation:
Given the following data;
1. Voltage = 12 Volts
Current = 0.5 Amps
Time, t = 8 mins to seconds = 8 * 60 = 480 seconds
To find the energy;
Power = current * voltage
Power = 12 * 0.5
Power = 6 Watts
Next, we find the energy transferred;
Energy = power * time
Energy = 6 * 480
Energy = 2880 Joules
2. Charge, Q = 4 coulombs
Potential difference, p.d = 15V
To find the total energy transferred;
Energy = Q * p.d
Energy = 4 * 15
Energy = 60 Joules
3. Voltage = 6 Volts
Current = 1 Amps
Time = 2 minutes to seconds = 2 * 60 = 120 seconds
To find the quantity of charge;
Quantity of charge = current * time
Quantity of charge = 1 * 120
Quantity of charge = 120 Coulombs
Electrostatic forces between charges depend on the product of
the sizes of the charges, and the distance between them.
We should also mention the item about whether the charges are
both the same sign or opposite signs. That determines whether
the forces will pull them together or push them apart, which is a
pretty significant item.
A. 14.59 is correctly rounded to 4 significant digits.