Answer:
600 Joules
Explanation:
Using the formula F*d*cosФ. Assuming the Ф is parallel to the motion. The work done is 600 Joules.
First, we assume this as an ideal gas so we use the equation PV=nRT. Then, we use the conditions at STP that would be 1 atm and 273.15 K. We calculate as follows:
PV= nRT
PV= mRT/MM
1 atm (.245 L) =1.30(0.08206)(273.15) / MM
MM = 118.94 g/mol <--- ANSWER
Answer: 20.4m
Explanation:
Mass = 0.145kg
Initial velocity, Vi =20m/s
Initial kinetic energy K =1/2mv^2
Initial potential energy Ui = mgx = 0joules
: From conservation of energy,
Uf + Kf = Ui + Ki ( where f represent (final) )
Thus
mgXf + 0 = 0+1/2 mv^2
Xf = Vi^2/ 2g
= (20m/s) ^2/ 2(9.81m/s)^2
=20.4m
Answer:
Option A = 1.
Explanation:
So, in order to solve this question we are given the Important infomation or data or parameters in the question above as;
(1). First, Both objects A and D represent fixed.
(2). Both objects A and D are negatively-charged particles of equal magnitude.
(3). "Object B represents a fixed, positively-charged particle (equal, but opposite charge from A and D)."
(4). "Object C shows a moving, positively-charged particle."
So, our mission is to determine the arrow that would correctly show the force of attraction or repulsion on object C caused by the other two objects.
We can do that by drawing out the forces of attraction and the resultants. Therefore, CHECK THE ATTACHED FILE/PICTURE FOR THE DRAWINGS.
The forces of attraction due to objects A and B on on object C will be towards themselves. Hence, the resultant is ONE(1).
Explanation:
Substances become neutral at the number 7 because at this point, the acid and Base are equal and becomes neutralized