Answer:
Object 3 has greatest acceleration.
Explanation:
Objects Mass Force
1 10 kg 4 N
2 100 grams 20 N
3 10 grams 4 N
4 1 kg 20 N
Acceleration of object 1,

Acceleration of object 2,

Acceleration of object 3,

Acceleration of object 4,

It is clear that the acceleration of object 3 is
and it is greatest of all. So, the correct option is (3).
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is

Answer:
4 m/s²
Explanation:
When the elevator is 1 m below point of contact , compression will be 1 m.
Restoring force in the spring will be 10600 N. Friction force of 17000N will also act in upward direction . The weight of 2000 x 9.8 N will act downwards
Force in down ward direction = 2000 x 9.8
= 19600 N
Force in upward direction
= 10600 + 17000
= 27600 N
Net force in upward direction
= 27600 - 19600
= 8000 N
Acceleration in upward direction
= 8000 / 2000
= 4 m/s²
Answer:
E) d/sqrt2
Explanation:
The initial electric force between the two charge is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
d is the separation between the two charges
We can also rewrite it as

So if we want to make the force F twice as strong,
F' = 2F
the new distance between the charges would be

so the correct option is E.