Answer:
C. Yes because the hang glider is moving.
By Newton's Law of Universal Gravitation.
F = GMm/r²
Where F is Force of Gravitation, M = Mass of first object, m = mass of second object, r = distance of separation
From the formula, you can see that if the masses, M and m, increased, the value of F would definitely increase as well.
And if r increased the value of F would be reduced because you would be dividing by a bigger number, but when the value of r is decreased the value of F would be increased, because you would then be dividing by something smaller. Note the r is at the denominator of the formula.
So F would increase if there was increase in Masses and decrease in distance.
So the answer is C. a and b.
<span>Pitch and frequency are more or less the same thing - high pitch = high frequency.
The freqency of vibration of a string f = 1/length (L) so as length decreases the frequency increases.</span>
Answer:
The area of the rectangle plus the area of the triangle under the line
Explanation:
In this case, the object moves with constant acceleration. Initial speed of the object is 0.
Equation of kinematics :
v = u +at
v = at
v is directly proportional to time. If means that the graph is straight line passing through origin. We know that area under v-t graph gives displacement. So, the correct option is (c).
<span>First, water evaporates from the ocean to the atmosphere, then... put each step in the correct order.
</span>Second- atmospheric circulation advects the water.
Third- water condensates to form clouds.
Fourth- precipitation falls from clouds to the land.
Fifth- some water stored as snow or ice.
Sixth- water either ±ows along the surface in rivers and lakes or infiltrates the ground.
Seventh- water returns to the ocean.