Answer:
we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.
Explanation:
To design the experiment of measuring the critical angle, we describe the phenomenon, when the light passes from a medium with a higher refractive index to one with a lower index, it separates from the normal one and the Critical Angle is defined as the Angle for which the refraction occurs at 90º
n₂ sin θ₂ = n₁ sin 90
n₁ / n₂ = sin θ₂
As we can see, we have to measure the angle with which the laser touches the exit surface of the glass block.
Design of the experiment:
We place the glass block on the ramp and at the top we hit the conveyor for half the angle, we climb the block on the ramp and see that the angle of incidence of lightning on the exit face changes, part of the beam comes out of the glass , we see it by dispersion in the particles of dirty in the air; Maybe the conveyor or the laser should be moved slightly so that the beam touches the point of origin on the conveyor.
When we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.
Answer:
It increases heart rate and blood pressure, heart problems, dehydration, seizures, and dangerously high blood pressure. (From overconsumption of caffine.)
Explanation:
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes