Answer:
The correct answer is 1.33 x 10⁻⁵ M
Explanation:
The concentration of the stock solution is: C= 1.33 M
In the first dilution, the student added 1 ml of stock solution to 9 ml of water. The total volume of the solution is 1 ml + 9 ml = 10 ml. So, the first diluted concentration is:
C₁= 1.33 M x 1 ml/10 ml = 1.33 M x 1/10 = 0.133 M
The second dilution is performed on C₁. The student added 1 ml of 0.133 M solution to 9 ml of water. Again, the total volume is 1 ml + 9 ml = 10 ml. The second diluted concentration is:
C₂= 0.133 M x 1 ml/10 ml = 0.133 M x 1/10= 0.0133 M
Since the student repeated the same dilution process 3 times more (for a total of 5 times), we have to multiply 5 times the initial concentration by the factor 1/10:
Final concentration = initial concentration x 1/10 x 1/10 x 1/10 x 1/10 x 1/10
= initial concentration x (1/10)⁵
= 1.33 M x 1 x 10⁻⁵
= 1.33 x 10⁻⁵ M
Answer:
Analog recordings copy the original sound.
Explanation:
Answer : The final volume at STP is, 1000 L
Explanation :
According to the Boyle's, law, the pressure of the gas is inversely proportional to the volume of gas at constant temperature and moles of gas.

or,

where,
= initial pressure = 1520 mmHg = 2 atm (1 atm = 760 mmHg)
= final pressure at STP = 1 atm
= initial volume = 500.0 L
= final volume at STP = ?
Now put all the given values in the above formula, we get:


Therefore, the final volume at STP is, 1000 L
Answer:
See explanation
Explanation:
In the scientific method, you always begin with asking a question. Then, you do research, make a hypothesis, and test that hypothesis based on the initial question. If experimental data does not support your hypothesis, then you can restart by asking a new question, based on what you already know. Hope this helps!