Answer:
Chlorophyll
Explanation:
This is the green pigment that allows photosynthesis to occur
Mitochondria: cell energy
Cytoplasm: what fills the space between organelles in a cell
Chlorine: not sure but you they put it in pools
Liquid crystal molecules have very unique structures, allowing them to be highly affected by electric fields, changing their orientation in the liquid crystal structure. This is why they are used in LCD screens. They are also highly sensitive to changes in temperature. Therefore the answer is C.
Hope this helps!
Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.
Answer:
1.67 atm.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm (P = ??? atm).
V is the volume of the gas in L (V = 5.0 L).
n is the no. of moles of the gas in mol (n = 0.5 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 203 K).
∴ P = nRT/V = (0.5 mol)(0.0821 L.atm/mol.K)(203 K)/(5.0 L) = 1.67 atm.