Because going down a column you are jumping up to the next higher main energy level (n) and each energy level is further out from the nucleus
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Linking monomers together to form a polymer .This chemical reaction also forms water molecules.
<h3>What is Polymerization?</h3>
This is a type of reaction which involves the linking of two or more monomers to form a polymer.
Dehydration reaction forms water molecules as part of the product thereby making it the most appropriate choice.
Read more about Dehydration here brainly.com/question/1301665
#SPJ1
B is correct. Molecules move faster when they are hotter because they have more energy. You can notice this change with your naked eye. Molecules in solids don't move. They have barely any energy. Hope this helps! ;)
Answer:
6.2 g
Explanation:
In a first-order decay, the formula for the amount remaining after <em>n</em> half-lives is
where
<em>N</em>₀ and <em>N</em> are the initial and final amounts of the substance
1. Calculate the <em>number of half-lives</em>.
If
2. Calculate the <em>final mass</em> of the substance.