Answer:
the surface tension of H20 is 72 dynes/cm at 25°C
Answer:
blah blah blah blah blah blah blah blah blah blah blah
Here is the complete question.
Benzalkonium Chloride Solution ------------> 250ml
Make solution such that when 10ml is diluted to a total volume of 1 liter a 1:200 is produced.
Sig: Dilute 10ml to a liter and apply to affected area twice daily
How many milliliters of a 17% benzalkonium chloride stock solution would be needed to prepare a liter of a 1:200 solution of benzalkonium chloride?
(A) 1700 mL
(B) 29.4 mL
(C) 17 mL
(D) 294 mL
Answer:
(B) 29.4 mL
Explanation:
1 L = 1000 mL
1:200 solution implies the
in 200 mL solution.
200 mL of solution = 1g of Benzalkonium chloride
1000 mL will be 
200mL × 1g = 1000 mL × x(g)
x(g) = 
x(g) = 0.2 g
That is to say, 0.2 g of benzalkonium chloride in 1000mL of diluted solution of 1;200 is also the amount in 10mL of the stock solution to be prepared.
∴ 
y(g) = 
y(g) = 5g of benzalkonium chloride.
Now, at 17%
concentrate contains 17g/100ml:
∴ the number of milliliters of a 17% benzalkonium chloride stock solution that is needed to prepare a liter of a 1:200 solution of benzalkonium chloride will be;
= 
z(mL) = 
z(mL) = 29.41176 mL
≅ 29.4 mL
Therefore, there are 29.4 mL of a 17% benzalkonium chloride stock solution that is required to prepare a liter of a 1:200 solution of benzalkonium chloride
Answer:
The mass of an atom is found in its nucleus.
Explanation:
An atom is made of three different particles: protons, neutrons and electrons.
Protons (positive charge) and neutrons (no charge) each have a mass of 1 AMU. They are both found in the nucleus (centre) of the atom.
Electrons (negative charge) are considered to have a mass of 0. Their mass is not actually 0, but very close so we do not count them. They are not in the nucleus, but found in shells surrounding the atom.
To calculate the mass of an atom, we add the number of protons and the number of electrons.
m = P + N
Answer:

Explanation:
1. Take in account the sulfuric acid at STP:

2. Density is expressed as the ratio between the mass and the volume of a substance so:

Solving for m:

3. Replace values:

