<span> i'm going to be slightly extra careful in showing each step. specific, ln [n / (n+a million) ]= ln n - ln(n+a million). So, we've sum(n=a million to infinity) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) [ln n - ln(n+a million)] = lim(ok--> infinity) (ln a million - ln 2) + (ln 2 - ln 3) + ... + (ln ok - ln(ok+a million)) = lim(ok--> infinity) (ln a million - ln(ok+a million)), for the reason that fairly much all the words cancel one yet another. Now, ln a million = 0 and lim(ok--> infinity) ln(ok+a million) is countless. So, the sum diverges to -infinity. IM NOT COMPLETELY SURE
</span>
5x + y = 27
substitute: 5x + 4x = 27
combine: 9x = 27
divide (by 9): x = 3
Answer:
Yes
Step-by-step explanation:
To figure out if (1,2) is a solution to the system, we can plug the values in and see if it is true.
3x-2y=-1
3(1)-2(2)=-1
3-4=-1
-1=-1
It is true for this equation. Now let's check the next one.
y=-x+3
2=-(1)+3
2=2
Since both equations are true when we plug the values in, (1,2) is a solution to the system.
"a ∝ b" means "a is proportional to b", which in turn means there is some constant k such that
a = kb
We're given that a = 18 and b = 3, so that
18 = 3k ⇒ k = 6
Then when b = 5, we would have
a = 6 × 5 = 30