Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>
Answer:
Claim 1 is the correct answer.
Without doing research before doing an experiment you’d be at risk, example: Chemical reactions that COULD cause chemicals burning through human skin, or setting off an harmful explosion by mixing unknown chemicals together.
Answer:
1.429 g of N₂
Explanation:
The Haber process is a reaction that combines nitrogen with hydrogen to form ammonia according to the following balanced equation:
- N₂ ₍g₎ + 3 H₂ ₍g₎ ⇆ 2NH₃ ₍g₎
One can note that 1 mol of N₂ react with H₂ to produce 2 mol of NH₃.
We cannot compare weight of a substance (in grams) to another in chemical reactions, but we can use moles, then we have to convert the weight of NH3 to moles.
no. of moles of NH₃ = (mass / molar mass) = (1.7 g / 17 g/mol) = 0.1 mol
and the actual yield is 98% , then the theoretical number of moles that would be produced are:
- percent yield = (actual yield / theoretical yield) × 100
98 = (0.1 mol / theoretical yield) × 100
theoretical no. of moles of NH₃ = (0.1 * 100) /98 = 0.102 mol
using cross multiplication
1 mol of N₂ → 2 mol of NH₃.
?? mol of N₂ → 0.102 mol of NH₃.
no of moles of N₂ = [(1 mol * 0.102 mol) / 2 mol] = 0.051 mol
Last step is to convert the moles back to grams using:
mass = (no of moles of N₂ * molar mass of N₂)
= (0.051 mol * 28 g/mol) = 1.429 g
<span>ZnS + O --> ZnO + SO
Okay so first you have to count up the number of elements on each side of the equation. Your objective is to have the same number of each element on both sides.
Left Side:
Zn - 1
S - 1
O - 1
Right Side:
Zn - 1
S - 1
O - 2
Since there are two oxygens on the right side, you have to add a coefficient of 2 to the oxygen on the left side. The coefficient tells us that that element or molecule is being multiplied by the value of coefficient. Since we're adding a coefficient of 2 to the oxygen on the left side, there are now 2 oxygens on that side. Because that is the same amount of oxygen as on the right, the equation is now balanced.
Your final equation should look like this: </span>ZnS + 2O --> ZnO + SO
In conclusion, the answer is 2.