Mass using grams because of the balance scale is evenly weighted not from springs and gravity like a normal scale.
Answer:
Neutralization
Explanation:
When an acid react with base it form the salt and water. The reaction is also called neutralization reaction because both neutralize each other.
In neutralization reaction equal amount of acid and base react to neutralize each other and equal amount of water and salt are formed. When pH does not reach to 7 its means there is less amount of one of reactant which is not fully neutralize.
Neutralization reactions are also used as first aid. For example when someone is dealing with HCl for cleaning purpose of toilet and get touched. It is advised to neutralize it with soap, milk or egg white.
Example:
Hydrochloric acid when react with the sodium hydroxide, a salt sodium chloride and water are formed.
Chemical equation:
HCl + NaOH → NaCl + H₂O
Titration:
Neutralization reactions are also used to determine the concentration of solution. Titration is a quantitative technique in which acid or base is gradually added into the solution whose concentration is to be determine until the neutral point is reached.
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Answer:
Explanation:
a) For diatomic gas: Translational motion = 3 and rotational motion = 2
∴ Total (internal energy) = 3 + 2 = 5
b) Translational + Rotational + Vibrational = 3 + 2 + 1 = 6
c) Linear molecule
i) Non linear molecule
ii) Monatomic molecule