Answer:
Where are the question's???
Explanation:
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Zn(s) + 2 HCl(aq) → ZnCl₂(aq) + H₂(g)
Oxidation means lose of electrons and increase of positive charge so the part which oxidized in this equation is Zn(s) because it converted to Zn²⁺ (i.e. lost two electrons)
Decay constant of the process 1×10^(-12) day^(-1).
<h3>What is decay constant?</h3>
A radioactive nuclide's probability of decay per unit time is known as its decay constant, which is expressed in units of s1 or a1. As a result, as shown by the equation dP/P dt =, the number of parent nuclides P declines with time t. Nuclear forces are about 1,000,000 times more powerful than electrical and molecular forces in their ability to bind protons and neutrons. The strength of the bonds holding the radioactive element are likewise indifferent to the decay probabilities and's, in addition to being unaffected by temperature and pressure. The decay constant is related to the nuclide's T 1/2 half-life by T 1/2 = ln 2/.
To know more about decay constant:
brainly.com/question/16623902
#SPJ4
A. 1.01 is the right answer
Since
The formula is Pv= nRT
P=1 atm
V= 22.4 L
N= x
r= 0.0821
t = 273 k (bc it’s standard temperature)
So (1)(22.4)=(x)(0.0821)(273)
X= 1.001