Answer:
Oxidation number:
3*1+ oxidation number of J+2*-2= -1
Oxidation number of J = 0
The presence of lactic acid, produced during the lactic acid fermentation is responsible for the sour taste and for the improved microbiological stability and safety of the food. This lactic acid fermentation is responsible for the sour taste of dairy products such as cheese, yoghurt and kefir.
1.<span>Western world: yogurt, sourdough breads, sauerkraut, cucumber pickles and olives.
2.</span><span>Middle East: pickled vegetables.
3.</span><span>Korea: kimchi (fermented mixture of Chinese cabbage, radishes, red pepper, garlic and ginger)
4.</span><span>Russia: kefir.
5.</span><span>Egypt: laban rayab and laban zeer (fermented milks), kishk (fermented cereal and milk mixture)
6.</span><span>Nigeria: gari (fermented cassava)
7.</span><span>South Africa : magou (fermented maize porridge)
8.</span><span>Thailand : nham (fermented fresh pork)
9.</span><span>Philippines : balao balao (fermented rice and shrimp mixture)
</span><span>Lactic acid fermentation also gives the sour taste to fermented vegetables such as traditionally cultured sauerkraut and pickles. The sugars in the cabbage are converted into lactic acid and serve as a preservative.</span>
Answer: B= Rusting ability
Explanation:
Physical property is defined as the property which can be measured and whose value describes the state of physical system. For Example: State, density etc.
Chemical property is defined as the property of a substance which is observed during a reaction where the chemical composition identity of the substance gets changed.
1. Boiling point: is a physical property as there is a change of state.
2. Rusting ability: is a chemical property as there is formation of new substances.
3. Melting point: is a physical property as there is a change of state.
4. Density: is a physical property as there is no formation of new substances.
Answer:
5.5 atm
Explanation:
Step 1: Calculate the moles in 2.0 L of oxygen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
2.0 L × 1 mol/22.4 L = 0.089 mol
Step 2: Calculate the moles in 8.0 L of nitrogen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
8.0 L × 1 mol/22.4 L = 0.36 mol
Step 3: Calculate the total number of moles of the mixture
n = 0.089 mol + 0.36 mol = 0.45 mol
Step 4: Calculate the pressure exerted by the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.45 mol × (0.0821 atm.L/mol.K) × 298 K / 2.0 L = 5.5 atm
Answer:
The differemt isotopes that differ in atomic mass
Explanation: