Answer:
135 hour
Explanation:
It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.
We have to find the time necessary to achieve the same concentration at a 6 mm position.
we know that
where x is distance and t is time .As the temperature is constant so D will be also constant
So
then
we have given
and we have to find
putting all these value in equation

so
In industries together with production, we want people to address the manufacturing of merchandise and the usage of heavy machinery.
<h3>What is the painting situation?</h3>
In such painting situations, people are at risk of injuries, and this prices the maximum for the company. So so that you can put into effect value discount is such conditions we want to have right coincidence cowl plans for the people and make sure all of the protection precautions are taken withinside the factory.
- The people have to be properly educated on using protection measures and in case any injuries arise we have to have coverage claims in order that we not want to make investments extra cash and we also can offer protection and protection to the people.
- This approach is excellent for this enterprise due to the fact regardless of what number of precautions we take people are uncovered to fitness risks and as a result having the right coverage insurance is a superb value discount strategy.
Read more bout the compensation :
brainly.com/question/25273589
#SPJ1
Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz
Answer:
Velocity of ball B after impact is
and ball A is 
Explanation:
= Initial velocity of ball A

= Initial velocity of ball B = 0
= Final velocity of ball A
= Final velocity of ball B
= Coefficient of restitution = 0.8
From the conservation of momentum along the normal we have

Coefficient of restitution is given by



Adding the above two equations we get



From the conservation of momentum along the plane of contact we have


Velocity of ball B after impact is
and ball A is
.