1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
5

Diffrerentiate y=cos^{4} (3x+1)

Engineering
1 answer:
Aleksandr [31]3 years ago
7 0

Answer:

-6sin(6x+2)cos²(3x+1)dx.

Explanation:

dy=4*cos^3(3x+1)*3*(-sin(3x+1))dx=-6sin(6x+2)cos^2(3x+1)dx.

You might be interested in
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
Gtjffs
grandymaker [24]

the required documents is 3000

4 0
3 years ago
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
3 years ago
2. The moist weight of 0.1 ft3 of soil is 12.2 lb. If the moisture content is 12% and the specific gravity of soil solids is 2.7
adell [148]

The answers to dry unit weight, void ratio, porosity, degree of saturation, volume occupied by water are respectively;

γ_d = 108.93 lb/ft³; e = 0.56; n = 0.36; S = 0.58; V_w = 0.021 ft³

<h3>Calculation of Volume and Weight of soil</h3>

We are given;

Moist weight; W = 12.2 lb

Volume of moist soil; V = 0.1 ft³

moisture content; w = 12% = 0.12

Specific gravity of soil solids; G_s = 2.72

A) Formula for dry unit weight is;

γ_d = γ/(1 + w)

where γ_w is moist unit weight as;

γ_w = W/V

γ_w = 122/0.1 = 122 lb/ft³

Thus;

γ_d = 122/(1 + 0.12)

γ_d = 108.93 lb/ft³

B) Formula for void ratio is;

e = [(G_s * γ_w)/γ_d] - 1

e = [(2.72 * 122)/108.93] - 1

e = 0.56

C) Formula for porosity is;

n = e/(1 + e)

n = 0.56/(1 + 0.56)

n = 0.36

D) Formula for degree of saturation is;

S = (w * G_s)/e

S = (0.12 * 2.72)/0.56

S = 0.58

E) Volume occupied by water is gotten from;

V_w = S*V_v

where;

V_v is volume of voids = nV

V_v = 0.36*0.1

V_v = 0.036 ft³

Thus;

V_w = 0.58 * 0.036

V_w = 0.021 ft³

Read more about Specific Gravity of Soil at; brainly.com/question/14932758

4 0
2 years ago
Energy transfer in mechanical systems: During steady-state operation, a mechanical gearbox receives 70 KW of input power through
Degger [83]

Answer:

Heat transfer rate(Q)= 1.197kW

Power output(W)=68.803kW

3 0
3 years ago
Other questions:
  • Match each titration term with its definition.
    15·1 answer
  • Number the statements listed below in the order that they would occur in engine operation. Then, label these stages as intake, c
    14·1 answer
  • What is kirchoff's current law?​
    10·2 answers
  • What is the connection between the air fuel ratio and an engine running rich/poor? please give clear examples and full sentances
    9·1 answer
  • What engine does the Mercedes 400e have?
    10·1 answer
  • Can be used to eliminate rubbing friction of wheel touching frame. 1.Traction 2.Thrust washer
    9·1 answer
  • These are the most widely used tools and most often abuse tool​
    15·2 answers
  • The section should span between 10.9 and 13.4 cm (4.30 and 5.30 inches) as measured from the end supports and should be able to
    5·1 answer
  • What is included in the environmental impact assessment process, such as the use of geographic information systems?
    15·1 answer
  • In an ungrounded electrical systems with conductors installed in grounded metal raceways and enclosures, what is the voltage fro
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!