1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
3 years ago
13

A pump operating at steady state receives liquid water at 20°C, 100 kPa with a mass flow rate of 53 kg/min. The pressure of the

water at the pump exit is 5 MPa. The isentropic pump efficiency is 70%. Assume the pump is adiabatic and ignore changes in potential and kinetic energy.
(a) Determine the required power input to the pump.
Engineering
1 answer:
VARVARA [1.3K]3 years ago
5 0

Answer:

Input Power = 6.341 KW

Explanation:

First, we need to calculate enthalpy of the water at inlet and exit state.

At inlet, water is at 20° C and 100 KPa. Under these conditions from saturated water table:

Since the water is in compresses liquid state and the data is not available in compressed liquid chart. Therefore, we use approximation:

h₁ = hf at 20° C = 83.915 KJ/kg

s₁ = sf at 20° C = 0.2965 KJ/kg.k

At the exit state,

P₂ = 5 M Pa

s₂ = s₁ = 0.2965 K J / kg.k    (Isentropic Process)

Since Sg at 5 M Pa is greater than s₂. Therefore, water is in compresses liquid state. Therefore, from compressed liquid property table:

h₂ = 88.94 KJ/kg

Now, the total work done by the pump can be calculated as:

Pump Work = W = (Mass Flow Rate)(h₂ - h₁)

W = (53 kg/min)(1 min/60 sec)(88.94 KJ/kg - 83.915 KJ/kg)

W = 4.438 KW

The efficiency of pump is given as:

efficiency = η = Pump Work/Input Power

Input Power = W/η

Input Power = 4.438 KW/0.7

<u>Input Power = 6.341 KW</u>

You might be interested in
2. When performing an alignment, what action should be taken immediately after putting a vehicle on the rack?
mash [69]
D...................
3 0
2 years ago
For a bronze alloy, the stress at which plastic deformation begins is 266 MPa and the modulus of elasticity is105 GPa.
pentagon [3]

Answer:

88750 N

Explanation:

given data:

plastic deformation σy=266 MPa=266*10^6 N/m^2

cross-sectional area Ao=333 mm^2=333*10^-6 m^2

solution:

To determine the maximum load that can be applied without

plastic deformation (Fy).

Fy=σy*Ao

   =88750 N

7 0
2 years ago
At an axial load of 22 kN, a 15-mm-thick × 40-mm-wide polyimide polymer bar elongates 4.1 mm while the bar width contracts 0.15
Alenkasestr [34]

Answer:

The Poisson's Ratio of the bar is 0.247

Explanation:

The Poisson's ratio is got by using the formula

Lateral strain / longitudinal strain

Lateral strain = elongation / original width (since we are given the change in width as a result of compession)

Lateral strain = 0.15mm / 40 mm =0.00375

Please note that strain is a dimensionless quantity, hence it has no unit.

The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.

Longitudinal strain = 4.1 mm / 270 mm = 0.015185

Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247

The Poisson's Ratio of the bar is 0.247

Please note also that this quantity also does not have a dimension

3 0
3 years ago
Technician A says that a radio may be able to receive AM signals, but not FM signals if the antenna is defective. Technician B s
DIA [1.3K]

The response to whether the statements made by both technicians are correct is that;

D: Neither Technician A nor Technician B are correct.

<h3>Radio Antennas</h3>

In radios, antennas are the means by which signals to the sought frequency be it AM or FM are received.

Now, if the antenna is bad, it means it cannot pick any radio frequency at all and so Technician A is wrong.

Now, most commercial antennas usually come around a resistance of 60 ohms and so it is not required for a good antenna to have as much as 500 ohms resistance and so Technician B is wrong.

Read more about Antennas at; brainly.com/question/25789224

3 0
2 years ago
If you are driving a 30-foot
Ratling [72]

Answer:

3 sec

If you are driving a 30-foot vehicle at 55 mph, how many seconds of following distance should you allow? 30ft truck. = 3 sec. Since the truck is over 40 mph.

Explanation:

5 0
3 years ago
Other questions:
  • 1. Computers are fully digital which means: A. They can’t convert things from analog B. They work only with numeric digits (base
    6·1 answer
  • Bridge A is the longest suspension bridge in a Country. Bridge B is 5555 feet shortershorter than Bridge A. If the length of Bri
    9·1 answer
  • The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage needed to
    8·1 answer
  • Hi im ***ar and im doing sculptural but what should it be about star wars or Marvel
    9·1 answer
  • A Wii remote flung from a hand through a TV, with a kinetic energy of 1.44J and a mass of 4.5kg. Whats the velocity?
    6·1 answer
  • Which of the following machine parts always require
    12·1 answer
  • GOOD AFTERNOON GUYSS!! ​
    15·2 answers
  • An open top concrete tank is available to a construction crew to store water. The job site has a daily requirement for 500 gallo
    10·1 answer
  • Explain race condition..<br><br>don't spam..​
    13·2 answers
  • As you push a toggle bolt into a wall, the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!