1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
2 years ago
5

Which type of energy increases when an object's atoms move faster?

Physics
2 answers:
Travka [436]2 years ago
8 0

Answer:

thermal

Explanation:

when an object's atoms move it causes friction, when friction happens, it heats ups causing thermal energy

melomori [17]2 years ago
3 0

Answer:

Thermal

Explanation:

you have to use friction to make thermal energy that's why when you rub your hands together it gets hotter and hotter. When you are playing tug of war and you get a rope burn it is because your hand is getting in contact with the rope that is slipping out of your hand

PLS CORRECT ME IF IM WRONG

You might be interested in
What is the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b?
xeze [42]

The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

<h3>Change in energy level of the electron</h3>

When photons jump from a higher energy level to a lower level, they emit or radiate energy.

The change in energy level of the electrons is calculated as follows;

ΔE = Eb - Ef

ΔE = -2.68 eV - (-5.74 eV)

ΔE = 3.06 eV

Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

Learn more about energy level here: brainly.com/question/14287666

#SPJ1

7 0
2 years ago
G a person of mass 100 kg is riding an elevator which was initially moving up with a velocity of 3 m/s. over a distance of 4 m t
andriy [413]
E=mc² where c is speed of the light
3 m/s more andmore less than speed of the light. So mass of the person still 100 kg
3 0
3 years ago
A child, hunting for his favorite wooden horse, is running on the ground around the edge of a stationary merry-go-round. The ang
olga55 [171]

Answer:

9.22 s

Explanation:

One-quarter of a turn away is 1/4 of 2π, or π/2 which is approximately 1.57 rad

Let t (seconds) be the time it takes for the child to catch up with the horse. We would have the following equation of motion for the child and the horse:

For the child: s_c = \omega_ct = 0.233t

For the horse: s_h = s_0 + a_ht^2/2 = 1.57 + 0.0136t^2/2 = 1.57 + 0.0068t^2

For the child to catch up with the horse, they must cover the same angular distance within the same time t:

s_c = s_h

0.233t = 1.57 + 0.0068t^2

0.0068t^2 - 0.233t + 1.57 = 0

t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

t= \frac{0.233\pm \sqrt{(-0.233)^2 - 4*(0.0068)*(1.57)}}{2*(0.0068)}

t= \frac{0.233\pm0.11}{0.0136}

t = 25.05 or t = 9.22

Since we are looking for the shortest time we will pick t = 9.22 s

6 0
3 years ago
A negative charge of 20 x 10-6C and another charge of 15 x 10-6C are separated by as distance of 0.7 m.
denpristay [2]

Answer:

Approximately 5.5\; \rm N, assuming that the volume of these two charged objects is negligible.

Explanation:

Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.

Let q_1 and q_2 denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question, q_1 = 20 \times 10^{-6}\; \rm C  and q_2 = 15 \times 10^{-6}\; \rm C.

Let r denote the distance between these two point charges. In this question, r = 0.7\; \rm m.

Let k denote the Coulomb constant. In standard units, k \approx 8.98755\times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2}.

By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\end{aligned}.

Substitute in the values and evaluate:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\\ &\approx 8.98755 \times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2} \\ &\quad \times 20\times 10^{-6}\; \rm C\\ &\quad \times 15\times 10^{-6}\; \rm C \\ &\quad \times \frac{1}{{(0.7\; \rm m)}^{2}}\\ &\approx 5.5\; \rm N \end{aligned}.

8 0
3 years ago
The brightness of a star is determined
nasty-shy [4]
100% C . By size and distance
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following objects would experience the largest force of gravity?
    5·2 answers
  • A satellite has a mass of 5832 kg and is in a circular orbit 4.13 × 105 m above the surface of a planet. The period of the orbit
    13·1 answer
  • A glow-worm of mass 5.0 g emits red light (650 nm) with a power of 0.10 W entirely in the backward direction. To what speed will
    11·2 answers
  • Most electrical power generation (except for solar) converts motion into electricity using a generator. The two required compone
    11·2 answers
  • An example of a high energy electromagnetic wave is
    11·1 answer
  • A 31.7 kg kid initially at rest slides down a frictionless water slide at 53.2 degrees, how fast is she moving in 3.45 s later?
    13·1 answer
  • an always be used to calculate the electric field. relates the electric field at points on a closed surface to the net charge en
    6·1 answer
  • How do u find the number of electronic
    5·1 answer
  • Hi free ponits hehehehhehbhrgivudksjbtyuvwijfe
    11·2 answers
  • The linear expansivity of metal P is twice that of another metal Q. When these materials are heated through the same temperature
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!