Your question seems to be incorrect. Please check below:
What force must the deltoid muscle provide to keep the arm in this position? By what factor does this force exceed the weight of the arm?<span>If you hold your arm outstretched with palm upward, as in (Figure 1) , the force to keep your arm from falling comes from your deltoid muscle. Assume that the arm has mass 4 kg and the distances and angles shown in (Figure 1) .
F=?
F/w= ?
The answer is </span><span>339 N</span><span>
</span>
<u>Answer</u>
To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use<em>. </em>
<u>Explanation</u>
A vernier caliper is an instrument that is used to measure the diameter of small circular objects such as diameter of a wires, thickness of an iron sheet.
The objects to be measured is place between the jaws of the calipers.
The vernier scale has two scales, the vernier scale and the main scale which is the very top scale.<em> To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use. </em>
Answer:Learn what gravitational potential energy means and how to calculate it. ... a pulley and rope, so the force due to lifting the box and the force due to gravity, ... would be used by an elevator lifting a 75 kg person through a height of 50 m if the ... When you are close to a planet you are effectively bound to the planet by gravity ..
Explanation:
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
F = ma
a = f/m
if f doubled , acc. will be doubled