Answer:
Amplitude and wavelength
Explanation:
- The amplitude of a wave is the maximum displacement of the wave, measured with respect to the equilibrium position (so, for a water wave it is the maximum height of the wave relative to the equilibrium position)
- The wavelength of a wave is the distance between two consecutive crests (or throughs) of a wave. So, for a water wave, it is the distance between two consecutive waves
Therefore, in the example in the problem we have:
- 2 meters corresponds to the amplitude
- 35 meters corresponds to the wavelength
It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
the puck recoils in each case.
larger mass stone gives puck greater recoil, smaller stone, smaller recoil
Answer:
from
force =mass x acceleration
mass = force/acceleration
m = f/a
m = 7.5/15
m=0.5kg