Momentum before the hit:
p = mv = 0.01 * 300 + 1 * 0
Momentum after the hit:
p = 0.01 * 150 + 1 * v
Momentum is conserved:
0.01 * 300 = 0.01 * 150 + v
3 = 1.5 + v
v = 1.5
The velocity of the block after the collision is 1.5 m/s.
Answer:
- Waves with higher amplitude transfer HIGHER energy.
- Waves with higher frequency transfer HIGHER energy.
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer :First part is what you learned so write what you learned then the other parts is The evidence that the universe is expanding comes with something called the red shift of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.
Explanation: