1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
9

Which would be best categorized as heat transfer by convection?

Physics
1 answer:
pantera1 [17]3 years ago
6 0

Answer:

B

Explanation:

there are three modes of heat transfer which are

  1. conduction
  2. convection
  3. radiation

Conduction is a mode of heat transfer in solid materials

Convection refers to a mode of heat transfer of fluids in motion.

Radiation occurs when heat moves as energy waves in form of infrared radiation. The energy from the sun reaches us by radiation.

From the list of options;

option A refers prevention of heat transfer by radiation

option B refers to noodles rising and falling in a poy of boiling water. The path which the noodles move shows the convective path of the fluid.

option C refers to heat transfer by conduction

Option D refers to oth convection and radiation as modes of heat transfer.

option B best describes heat transfer by convection

You might be interested in
A 6.00-μf parallel-plate capacitor has charges of 40.0 μc on its plates. how much potential energy is stored in this capacitor?
dedylja [7]

Thew energy stored in a capacitor of capacitance C and voltage between the plates V is

E=\frac{1}{2} CV^2=\frac{1}{2C} Q^2.

Substituting numerical value

E=\frac{1}{2*6*10^{-6}} (40*10^{-6})^2\\ E=133.33\; \mu J

7 0
3 years ago
If a 6V battery is connected to a light bulb whose resistance is 55,000Ω How much current will flow in the circuit?
notka56 [123]

Answer:

Current, I = 0.000109 Amps

Explanation:

Given the following data;

Voltage = 6V

Resistance = 55,000 Ohms

To find the current flowing through the circuit;

Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.

Mathematically, Ohm's law is given by the formula;

V = IR

Where;

V represents voltage measured in voltage.

I represents current measured in amperes.

R represents resistance measured in ohms.

Making current the subject of formula, we have;

I = \frac {V}{R}

Substituting into the formula, we have;

I = \frac {6}{55000}

Current, I = 0.000109 Amps

5 0
3 years ago
The temperature of an air parcel and the kinetic energy of an air parcel are ___________ related. this means that as the tempera
torisob [31]

The temperature of an air parcel and the kinetic energy of an air parcel are directly related. this means that as the temperature of the air parcel increases, the kinetic energy increases.

<h3>What is temperature?</h3>

Temperature is the measure of degree of hotness or coldness of a body.

Temperature is also the measure of the average kinetic energy of a system.

When the heat is applied to body, its temperature increases as the body gains heat.

Thus, the temperature of an air parcel and the kinetic energy of an air parcel are directly related. this means that as the temperature of the air parcel increases, the kinetic energy increases.

Learn more about temperature here: brainly.com/question/25677592

#SPJ1

8 0
2 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
3 years ago
Determine the acceleration due to gravity for low Earth orbit (LEO) given: MEarth = 6.00 x 1024 kg, rEarth = 6.40 x 106 m, G = 6
Nana76 [90]

Answer:

The answer to the question is as follows

The  acceleration due to gravity for low for orbit is  9.231 m/s²

Explanation:

The gravitational force is given as

F_{G}= \frac{Gm_{1} m_{2}}{r^{2} }

Where F_{G} = Gravitational force

G = Gravitational constant = 6.67×10⁻¹¹\frac{Nm^{2} }{kg^{2} }

m₁ = mEarth = mass of Earth = 6×10²⁴ kg

m₂ = The other mass which is acted upon by  F_{G} and = 1 kg

rEarth = The distance between the two masses = 6.40 x 10⁶ m

therefore at a height of 400 km above the erth we have

r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m

and  F_{G} = \frac{6.67*10^{-11} *6.40*10^{24} *1}{(6.8*10^{6})^{2} } = 9.231 N

Therefore the acceleration due to gravity =  F_{G} /mass  

9.231/1 or 9.231 m/s²

Therefore the acceleration due to gravity at 400 kn above the Earth's surface is  9.231 m/s²

4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the work w1 done on the block by the force of magnitude f1 = 75.0 n as the block moves from xi = -1.00 cm to xf = 3.00 cm .
    8·1 answer
  • Two particles each of mass m and charge q are suspended by strings of length / from a common point. Find the angle e that each s
    7·1 answer
  • WORTH 50 POINTS!!!! PLZ HELP ME!! ASAP!!
    7·1 answer
  • Question 1
    11·2 answers
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • Increasing temperature increases solubility so that 480 grams (g) of sugar makes a saturated solution in 100 milliliters (mL) of
    14·2 answers
  • Write a comparison of the current in three bulbs of increasing resistance connected in a series arrangement.
    15·1 answer
  • ANSWER ASAP AND WILL GIVE BRAINLIEST AND POINTS
    13·2 answers
  • I NEED HELP!!! PLS HELP ME MARK U BRAINLIEST!!
    7·1 answer
  • The freezing point of an aqueous 0.050 m cacl2solution is −0.27 °c. what is the van’t hoff factor (i) for cacl2at this concentra
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!