Answer:
Why is copper used for most electrical wiring? All metals have some amount of resistivity to electrical currents, which is why they require a power source to push the current through. The lower the level of resistivity, the more electrical conductivity a metal has
The answer is statement #3.
Na₂CrO₄ + PbCl₂ → PbCrO₄ + 2 NaCl
<u>Explanation:</u>
In a double displacement reaction, the reactants which are involved in the reaction exchanging their ions thereby produces 2 new compounds. Here sodium chromate and lead chloride are undergoing double displacement reaction, the ions exchanges their position there by forming sodium chloride and lead chromate. So the double displacement reaction is given as,
Na₂CrO₄ + PbCl₂ → PbCrO₄ + 2 NaCl
Answer:
2NaCl + FeO —-> 2Na2O + FeCl2
Explanation:
Answer:
Q = 233.42 J
Explanation:
Given data:
Mass of lead = 175 g
Initial temperature = 125.0°C
Final temperature = 22.0°C
Specific heat capacity of lead = 0.01295 J/g.°C
Heat absorbed by water = ?
Solution:
Heat absorbed by water is actually the heat lost by the metal.
Thus, we will calculate the heat lost by metal.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 22.0°C - 125.0°C
ΔT = -103°C
Q = 175 g × 0.01295 J/g.°C×-103°C
Q = -233.42 J
Heat absorbed by the water is 233.42 J.