Answer:
The rate at which sulfur dioxide is being produced is 0.90 kg/s.
Explanation:
Volume of oxygen gas consumed in second ,V= 994 L
Pressure of the gas = p
Temperature of the gas = T = 170°C= 170 + 273 K=443 K
Moles of oxygen gas consumed in a second = n
( ideapl gas equation)

n = 21.044 mole
Moles of dioxygen gas consumed per second = 21.044 mol
(Claus process)
According to reaction, 3 moles of dioxygen gives 2 moles of sulfur dioxide gas.Then 21.044 moles of dioxygen will give;
of sulfur dioxide
Mass of 14.029 moles of sulfur dioxide gas;
14.029 mol × 64 g/mol = 897.86 g
897.86 g = 0.89786 kg ≈ 0.90 kg
Mass of sulfur dioxide produced per second = 0.90 kg
The rate at which sulfur dioxide is being produced is 0.90 kg/s.
Answer:
Length (nm) Pressure (atm)
5.0 11.7
6.0 9.8
7.0 8.4
8.0 7.2
9.0 6.6
10.0 5.8
Explanation:
This is also PLATOS answer!!
Answer:
The correct answer is option B.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products
[S] = Concatenation of substrate = ?
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= initial concentration of enzyme
We have :

[S] =?

![v=V_{max}\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![\frac{V_{max}}{4}=V_{max}\times \frac{[S]}{(0.0050 M+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7Bmax%7D%7D%7B4%7D%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%280.0050%20M%2B%5BS%5D%29%7D)
![[S]=\frac{0.005 M}{3}=1.7\times 10^{-3} M](https://tex.z-dn.net/?f=%5BS%5D%3D%5Cfrac%7B0.005%20M%7D%7B3%7D%3D1.7%5Ctimes%2010%5E%7B-3%7D%20M)
So, the correct answer is option B.