<u>Answer:</u> The final equation has hydroxide ions which indicate that the reaction has occurred in a basic medium.
<u>Explanation:</u>
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously.
The oxidation reaction is defined as the reaction in which a chemical species loses electrons in a chemical reaction. It occurs when the oxidation number of a species increases.
A reduction reaction is defined as the reaction in which a chemical species gains electrons in a chemical reaction. It occurs when the oxidation number of a species decreases.
The given redox reaction follows:

To balance the given redox reaction in basic medium, there are few steps to be followed:
- Writing the given oxidation and reduction half-reactions for the given equation with the correct number of electrons
Oxidation half-reaction: 
Reduction half-reaction: 
- Multiply each half-reaction by the correct number in order to balance charges for the two half-reactions
Oxidation half-reaction:
( × 3)
Reduction half-reaction:
( × 2)
The half-reactions now become:
Oxidation half-reaction: 
Reduction half-reaction: 
- Add the equations and simplify to get a balanced equation
Overall redox reaction: 
As we can see that in the overall redox reaction, hydroxide ions are released in the solution. Thus, making it a basic solution
Im sorry about my answer a while ago.
answer: it will not be half empty ever. because any gas take all the space of the tank. molecules are everywhere they take so much space.
The reaction will generally form more reactants than products.
Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.