Photosynthesis is the ability for a plant to turn light into energy, thus feeding it
Explanation:
a) HNO2(aq) = HNO3(aq) + H2O(l) +NO(g)
b) SoCl2 (l) + H2O (l) = So2(g) + 2HCl(aq)
c) CH4 (g) + 2O2(g) = Co2 (g) + 2H2O(g)
d) 3CuO(s) + 2NH3 (g) = 3Cu(s) + 3H2O (l) + N2(g)
Answer: When coal is burned, chemical potential energy is transformed into thermal energy, light energy, and sound energy. Only the thermal energy is used for electricity production. Light and sound energy dissipate into the environment, immediately reducing efficiency.
Hope this helps.
Answer is: 28 kJ.
Chemical reaction: A₂ + B₂ ⇄ 2AB.
Ea(forward) = 105 kJ/mol.
Ea(reverse) = 77 kJ/mol.
ΔH(reaction) = ?
<span>The enthalpy change of reaction is the change in the energy of the reactants to the products.
</span>ΔH(reaction) = Ea(forward) - Ea(reverse).
ΔH(reaction) = 105 kJ/mol - 77 kJ/mol.
ΔH(reaction) = 28 kJ/mol; this is endothermic reaction (ΔH <span>> 0).</span>
Answer:
a. Phosphoric Acid
b. Acetic Acid
c. Hypochlorous Acid
Explanation:
A buffer works when the pH of this one is in pKa ± 1. That means, to find which buffer system works in some pH you need to find pKa:
pKa = -log Ka
<em>pKa Acetic acid:</em>
-log1.8x10⁻⁵ = 4.74
<em>pKa phosphoric acid:</em>
-log7.5x10⁻³ = 2.12
<em>pKa hypochlorous acid:</em>
-log3.5x10⁻⁸ = 7.46
a. For a pH of 2.8 the best choice is phophoric acid because its effective range is: 1.12 - 3.12 and 2.8 is between these values.
b. pH 4.5. Acetic acid. effective between pH's 3.74 - 5.74
c. pH 7.5. Hypochlorous acid that works between 6.46 and 8.46