Hey there!:
Molar mass H3PO4 = <span>97.9952 g/mol
Atomic Masses :
H = </span><span>1.00794 a.m.u
</span>P = <span>30.973762 a.m.u
</span>O = 15.9994 a.m.u<span>
H % = [ ( 1.00794 * 3 ) / </span> 97.9952 ] * 100
H% = <span>3.0857 %
P % = [ ( </span>30.973762 * 1 ) / 97.9952 ] * 100
P% = <span>31.6074 %
O % = [ ( </span>15.9994 * 4 ) / 97.9952 ] * 100
O% = <span>65.3069 %
Hope this helps!</span>
<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
Putting values in above equation, we get:
Converting the temperature from kelvins to degree Celsius, by using the conversion factor:
Hence, the temperature at which the food will cook is 219.14°C
Answer:
130 Liters
Explanation:
if 1 mol is 22.4 L, then 5.8 mol is 130 L (129.92 but use sig figs)
Answer:
13.94moles of Na₂O
Explanation:
The balanced reaction expression is given as:
4Na + O₂ → 2Na₂O
Given parameters:
Number of moles of O₂ = 6.97moles
Unknown:
Number of moles of Na₂O
Solution:
To solve this problem;
1 mole of O₂ will produce 2 moles of Na₂O ;
6.97 moles of O₂ will produce 6.97 x 2 = 13.94moles of Na₂O
Answer:
Why is copper used for most electrical wiring? All metals have some amount of resistivity to electrical currents, which is why they require a power source to push the current through. The lower the level of resistivity, the more electrical conductivity a metal has