Answer:
Approximately
(note that
.)
Explanation:
The molarity of a solution gives the number of moles of solute in each unit volume of the solution. In this
solution in water,
Let
be the number of moles of the solute in the whole solution. Let
represent the volume of that solution. The formula for the molarity
of that solution is:
.
In this question, the volume of the solution is known to be
. That's
in standard units. What needs to be found is
, the number of moles of
in that solution.
The molar mass (formula mass) of a compound gives the mass of each mole of units of this compound. For example, the molar mass of
is
means that the mass of one mole of
.
For this question,
.
Calculate the molarity of this solution:
.
Note that
(one mole per liter solution) is the same as
.
Answer:
This is google's answer for the last question
Explanation:
The kinetic energy increases as the particles move faster. The potential energy increases as the particles move farther apart. How are thermal energy and temperature related? When the temperature of an object increases, the average kinetic energy of its particles increases.
Do u have tik tok? Alsoo I made a question for u
<h3>1. <u>Answer</u>;</h3>
= 5.4×10-6 g AgBr
<h3><u>Explanation</u>;</h3>
AgBr(s) → Ag+(aq) + Br-(aq) Ksp = 3.3×10^-13
[Ag+][Br-] = Ksp = 3.3×10^-13 = X²
X = 5.7×10^-7 M = [Ag+] = mol/L AgBr that dissolve
1 mole of AgBr = 187.8 g
Therefore;
= 0.05 L × (5.7 × 10^-7 mol/L) × (187.8 g /mol)
= 5.4×10-6 g AgBr
<h3>2. <u>Answer and explanation;</u></h3>
The two factors that accounts for increased rate of chemical reaction when temperature is increased are:
- <u>Energy factor</u>; enough energy in the collision for the formation of an activated complex, where bonds are breaking and new ones forming. When temperature is increased, a greater number of molecular collisions possess enough energy to activate the reaction.
- <u>Frequency of collisions increases;</u> an increase in temperature makes particles move faster and collide more frequently, increasing the possibility of a reaction be-tween them.
More important factor; Energy factor is more important.
The reaction is zero order in [A].
Doubling [A] from 0.10 mol·L⁻¹ to 0.20 mol·L⁻¹ has no effect on the initial rate.