Answer:
x = -11
Step-by-step explanation:
7x-8 = 14+9x
7x - 8 - 7x -14 = 14 + 9x -7x -14
-22 = 2x
x = -11
1) 13a=-5
Make a the subject of the formula by dividing both sides by 13(the coefficient of a)
13a/13=-5/13
Therefore a= -0.385
The second one). 12-b= 12.5
You take the 12 to the other side making b subject of the formula (-b in this case)
-b= 12.5-12
-b= 0.5
(You cannot leave b with a negative sign so you will divide both sides by -1 to cancel out the negative sign)
-b/-1= 0.5/-1
Therefore b=-0.5
The third one). -0.1= -10c
You will divide both sides by the coefficient of c(number next to c) which is -10
-0.1/-10= -10c/-10
Hence, c= 0.01
Hi there!

Our interval is from 0 to 3, with 6 intervals. Thus:
3 ÷ 6 = 0.5, which is our width for each rectangle.
Since n = 6 and we are doing a right-riemann sum, the points we will be plugging in are:
0.5, 1, 1.5, 2, 2.5, 3
Evaluate:
(0.5 · f(0.5)) + (0.5 · f(1)) + (0.5 · f(1.5)) + (0.5 · f(2)) + (0.5 · f(2.5)) + (0.5 · f(3)) =
Simplify:
0.5( -2.75 + (-3) + (-.75) + 4 + 11.25 + 21) = 14.875
Answer:
Using either method, we obtain: 
Step-by-step explanation:
a) By evaluating the integral:
![\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cint%5Climits%5Et_0%20%7B%5Csqrt%5B8%5D%7Bu%5E3%7D%20%7D%20%5C%2C%20du)
The integral itself can be evaluated by writing the root and exponent of the variable u as: ![\sqrt[8]{u^3} =u^{\frac{3}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bu%5E3%7D%20%3Du%5E%7B%5Cfrac%7B3%7D%7B8%7D)
Then, an antiderivative of this is: 
which evaluated between the limits of integration gives:

and now the derivative of this expression with respect to "t" is:

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:
"If f is continuous on [a,b] then

is continuous on [a,b], differentiable on (a,b) and 
Since this this function
is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:
