Hope this helps some
"In chemistry and physics, atomic theory is a scientific theory of the nature of matter, which states that matter is composed of discrete units called atoms. ... In fact, in certain extreme environments, such as neutron stars, extreme temperature and pressure prevents atoms from existing at all."
Answer:
6.82 g H₂S
General Formulas and Concepts:
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
0.200 mol H₂S
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
6.818 g H₂S ≈ 6.82 g H₂S
Energy that comes from the heat of the Earth's core is known as geothermal energy.
Solar energy comes from the Sun, hydro energy from water, and wave energy from wind and waves.
Answer:
The phosphodiester connects the 3′ carbon of one nucleotide to the 5′ carbon of another nucleotide
Explanation:
The phosphodiester bond is a covalent bond where a phosphate group is attached to adjacent C through an ester bond, which is a consequence of a condensation reaction between the two sugar hydroxyl groups and the phosphate group.
The diester bond between phosphoric acid and two sugar molecules in the DNA and RNA skeleton binds two nucleotides forming polymers known as oligonucleotides.
The phosphodiester bond binds a C3` with a C5` in both DNA and RNA
(base)1-(sugar)-OH + HO-P(O)2-O-(sugar)-(base)2
------>
------> (base)1-(sugar)-O-P(O)2-O-(sugar)-(base)2
During the reaction of two of the hydroxyl groups in phosphoric acid with a hydroxyl group in two other molecules two ester bonds in a phosphodiester group are formed. A condensation reaction in which a water molecule is lost generates each ester bond.