Answer:
(-1,0)
step-by-step explanation:
(-6,3)
right 5
(-1,3)
down 3
(-1,0)
Answer:
Step-by-step explanation:
Given that,
f(3) = 2
f'(3) = 5.
We want to estimate f(2.85)
The linear approximation of "f" at "a" is one way of writing the equation of the tangent line at "a".
At x = a, y = f(a) and the slope of the tangent line is f'(a).
So, in point slope form, the tangent line has equation
y − f(a) = f'(a)(x − a)
The linearization solves for y by adding f(a) to both sides
f(x) = f(a) + f'(a)(x − a).
Given that,
f(3) = 2,
f'(3) = 5
a = 3, we want to find f(2.85)
x = 2.85
Therefore,
f(x) = f(a) + f'(a)(x − a)
f(2.85) = 2 + 5(2.85 - 3)
f(2.85) = 2 + 5×-0.15
f(2.85) = 2 - 0.75
f(2.85) = 1.25
Answer: x=-17
Step-by-step explanation:
We first distribute the -12 across to the (x+5)
144=-12(x+5)
144=-12x-60
Then, we add 60 to both sides.
204 = -12x
Lastly, we divide the equation by -12.
204/-12 = -12x/-12
-17 = x
Answer:
f(x) = (x -3)^2 - 1
Step-by-step explanation:
f(x) = x^2 - 6x + 8
a = 1, b = -6 and c = 8
So we are finding half of the b equation (ignore the negative sign)
Half of 6 is 3, so we are going to square 3 (3^2 = 9) and add 9 to the left side and subtract 9 to the right side
(x) = (x^2 - 6x + 9) + (8 - 9)
You can tell the polynomial is a perfect square, so we will have to factor it using the perfect square method
(x^2 - 6x + 9)
square toot of x^2 is x and square root of 9 is 3 and the operation sign after the a number is a minus sign
(x -3)^2
Don't forget the rest of the equation from before
(x -3)^2 + (8 - 9)
(x -3)^2 - 1
So the equation is f(x) = (x -3)^2 - 1
Answer:
Quedan 2.083 m^3 de agua en el reservorio.
Equivalen a 2083 litros.
Step-by-step explanation:
Los dueños del restaurante tienen un reservorio de agua cuyo volumen es de 6.25 m^3.
Si han utilizado 2/3 del reservorio, esto implica que aún quedan en el reservorio una tercera parte del volumen original (1/3).
Entonces, la cantidad de metros cúbicos (m^3) de agua que quedan en el reservorio se puede calcular como:

Este valor equivale a un volumen en litros de:
