Answer:
The original length of the specimen 
Explanation:
Original diameter
= 30 mm
Final diameter
= 30.04 mm
Change in diameter Δd = 0.04 mm
Final length
= 105.20 mm
Elastic modulus E = 65.5 G pa = 65.5 ×
M pa
Shear modulus G = 25.4 G pa = 25.4 ×
M pa
We know that the relation between the shear modulus & elastic modulus is given by



This is the value of possion's ratio.
We know that the possion's ratio is given by


0.00476

Final length
= 105.2 m
Original length


This is the original length of the specimen.
Explanation:
Temperature range → 0 to 80'c
respective voltage output → 0.2v to 0.5v
required temperature range 20'c to 40'c
Where T = 20'c respective voltage


Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)
so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v
Therefore, the formula for the circuit will be

The simplest circuit will be a op-amp
NOTE: Refer the figure attached
Vs is sensor output
Vr is the reference volt, Vr = 0.275v

choose R2, R1 such that it will maintain required ratio
The output Vo can be connected to voltage buffer if you required better isolation.
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer:
small guitar with no strings?
Explanation:
it would be fun to make i think