Answer:
1.F is the electrostatic force between charges (in Newtons),
2.q₁ is the magnitude of the first charge (in Coulombs),
3.q₂ is the magnitude of the second charge (in Coulombs),
4.r is the shortest distance between the charges (in m),
5.ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C² .
Answer:

Explanation:
given,
number of cycle complete (f) = 116 cycles per minute
wavelength observed at 11 m in 1.5 m.


v = 7.33 m/s




The wavelength of the wave is equal to 
Answer:
imma need a few answer choices so i can do my research
Explanation:
Please any thank you
Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
For a 50 kg person receives an absorbed dose of gamma radiation of 20 millirads, the total energy absorbed is mathematically given as
E=0.1457J
<h3>What is the total energy absorbed?</h3>
Generally, the equation for the total energy absorbed is mathematically given as
E=mass*gamma radiation
Therefore
E=50*20*19^{-3}
E=0.1457J
In conclusion, the total energy absorbed
E=0.1457J
Read more about Energy
brainly.com/question/13439286