1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
6

A beam of light traveling through a liquid (of index of refraction n1 = 1.47) is incident on a surface at an angle of θ1 = 59° w

ith respect to the normal to the surface. It passes into the second medium and refracts at an angle of θ2 = 69° with respect to the normal.Randomized Variablesn1 = 1.47θ1 = 59°θ2 = 69°Part (a) Write an expression for the index of refraction of the second material.Part (b) Numerically, what is this index?Part (c) Numerically, what is the light's velocity in medium 1, in meters per second?Part (d) Numerically, what is the light's velocity in medium 2, in meters per second?
Physics
2 answers:
Archy [21]3 years ago
7 0

Answer:

a) n_{12}=0.918

b) n_2=1.349

c) v_1=2.041\times 10^{8}\ m.s^{-1}

d) v_2=2.223\times 10^8\ m.s^{-1}

Explanation:

Given:

  • refractive index of liquid medium 1 (with respect to air), n_1=1.47
  • angle of incidence in medium 1, \theta_1=59^{\circ}
  • angle of refraction in medium 2, \theta_2=69^{\circ}

(a)

<em>According to Snell's Law:</em>

<u>refractive index of medium 2 with respect to medium 1:</u>

n_{12}=\frac{sin\ \theta_1}{sin\ \theta_2}

n_{12}=\frac{sin\ 59^{\circ}}{sin\ 69^{\circ}}

n_{12}=0.918

(c)

Now the other form of Snell's law:

n =\frac{c}{v} ..............................(2)

where:

c = speed of light in air

n = refractive index of the medium with respect to air

v = speed of light in medium

<u>Using eq. (2) for medium 1:</u>

1.47=\frac{3\times 10^{8}}{v_1}

v_1=2.041\times 10^{8}\ m.s^{-1}

(d)

<u>Using eq. (2) for medium 2:</u>

n{12}=\frac{v_1}{v_2}

0.918 =\frac{2.041\times 10^{8}}{v_2}

v_2=2.223\times 10^8\ m.s^{-1}

(b)

<u>Now, refractive index of the medium 2 with respect to air</u>

n_2=\frac{3\times 10^8}{2.223\times 10^8}

n_2=1.349

frosja888 [35]3 years ago
5 0

Answer:

(a) n_{2} = \frac{n_{1}sin\theta_{1}}{sin\theta_{2}}

(b) n_{2} = 1.349

(c) v_{1} = 2.04\times 10^{8}\ m/s

(d) v_{2} = 2.22\times 10^{8}\ m/s

Solution:

As per the question:

Refractive index of medium 1, n_{1} = 1.47

Angle of refraction for medium 1, \theta_{1} = 59^{\circ}

Angle of refraction for medium 2, \theta_{1} = 69^{\circ}

Now,

(a) The expression for the refractive index of medium 2 is given by using Snell's law:

n_{1}sin\theta_{1} = n_{2}sin\theta_{2}

where

n_{2} = Refractive Index of medium 2

Now,

n_{2} = \frac{n_{1}sin\theta_{1}}{sin\theta_{2}}

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:

n_{2} = \frac{1.47\times sin59^{\circ}}{sin69^{\circ}}

n_{2} = 1.349

(c) To calculate the velocity of light in medium 1:

We know that:

Refractive\ index,\ n = \frac{Speed\ of\ light\ in vacuum,\ c}{Speed\ of\ light\ in\ medium,\ v}

Thus for medium 1

n_{1} = \frac{c}{v_{1}

v_{1} = \frac{c}{n_{1} = \frac{3\times 10^{8}}{1.47} = 2.04\times 10^{8}\ m/s

(d) To calculate the velocity of light in medium 2:

For medium 2:

n_{2} = \frac{c}{v_{2}

v_{2} = \frac{c}{n_{1} = \frac{3\times 10^{8}}{1.349} = 2.22\times 10^{8}\ m/s

You might be interested in
An airplane during departure has a constant acceleration of 3 m / s².
Rama09 [41]

Constant acceleration of plane = 3m/s²

a) Speed of the plane after 4s

Acceleration = speed/time

3m/s² = speed/4s

S = 12m/s

The speed of the plane after 4s is 12m/s.

b) Flight point will be termed as the point the plane got initial speed, u, 20m/s

Find speed after 8s, v

a = 3m/s²

from,

a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>

t

3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>

8

24 = v - 20

v = 44m/s

After 8s the plane would've 44m/s speed.

6 0
2 years ago
the age of Egyptian pyramid about NTT power 11 years the mankind exist for 29 years how many seconds will be men have exist if a
Zepler [3.9K]

It makes no sense how you typed this problem out.

3 0
3 years ago
A pipe of length 10.0 m increases in length by 1.5 cm when its temperature is increased by 90°F. What is its coefficient of line
azamat

The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F

<h3>How to determine the coefficient of linear expansion</h3>

From the question given above, the following data were obtained

  • Original diameter (L₁) = 10 m
  • Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
  • Change in temperature (∆T) = 90 °F
  • Coefficient of linear expansion (α) =?

The coefficient of linear expansion can be obtained as illustrated below:

α = ∆L / L₁∆T

α = 0.015 / (10 × 90)

α = 0.015 / 900

α = 1.67×10¯⁵ /°F

Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F

Learn more about coefficient of linear expansion:

brainly.com/question/28293570

#SPJ1

3 0
1 year ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
Which quantity is a vector quantity? displacement<br> distance<br> mass<br> temperature<br> volume
Arturiano [62]
The only vector quantity on that list is displacement.
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the force that opposes the movement of an object through water??
    5·2 answers
  • In the reaction C6H12 + ________ O2----&gt; 6H20 + 6CO2, what coefficient should be placed in front of 02 to balance the reactio
    15·2 answers
  • How might spontaneous generation be possible in a reducing environment? Question options: The reducing environment was created b
    10·1 answer
  • Which type of experiment involves changing only one variable at a time
    14·2 answers
  • Pretend for a day your non-dominant hand is broken and you can’t use of it. Pay attention to the activities you do every day. Yo
    8·1 answer
  • A 20 g bullet is shot from a 10 kg gun with a velocity of 400 m/s. What
    12·1 answer
  • Definition: In any chemical process, matter is neither lost nor gained.
    14·1 answer
  • Which refers to the chemical name of CO? carbon monoxide carbon oxide monocarbon monoxide monoxide carbon
    8·2 answers
  • if a force of 50N is used to pull a box along the ground, at a distance of 8m. The box moves in the same direction as the force.
    11·1 answer
  • What important change in the atmosphere occurred during the Proterozoic Eon?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!