The impulse J is equal to the magnitude of the force applied to the cannonball times the time it is applied:

But the impulse is also equal to the change in momentum of the cannonball:

If we put the two equations together, we find

And since we know the magnitude of the average force and the time, we can calculate the change in momentum:
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.
<span>Wave energy is an idea that Robert Hutchings Goddard introduced in his “Further Developments” to his research "A Method of Reaching Extreme Altitudes" </span>
Answer:
The beta decay takes place.
Explanation:
The reaction of radioactivity of carbon 14 to nitrogen 14 is
There is a beta decay.
The reaction is

Here some energy is released in form of neutrino.
Answer:
D = 25 miles
Explanation:
To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.
Since both bicyclists collide, we know that Xa=Xb, so:
Xa = V*t = 10*t and Xb = 20 - V*t = 20 - 10*t
10*t = 20 - 10*t Solving for t:
t = 1 hour Now we can calculate the distance for the bee:
D = Vbee * t = 25 * 1 = 25 miles