Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
I don't know about it your answer will give another people
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
Answer:
Given that
Dry-bulb temperature(T) =24°C
Wet-bulb temperature(Tw) = 17°C
Pressure ,P = 1 atm
As we know that psychrometric chart are drawn at constant pressure.
From the diagram
ω= specific humidity
Lets take these two lines Dry-bulb temperature(T) line and Wet-bulb temperature(Tw) cut at point P
From chart at point P
a)
Specific humidity,ω = 0.00922 kg/kg
b)
The enthalpy ( h)
h=47.59 KJ/kg
c)
The relative humidity, RH
RH= 49.58 %
d)
Specific volume ,
v= 0.853 m³/kg
72 m/s
Explanation:
Given,
Frequency ( f ) = 6 Hz
Wavelength ( λ ) = 12 m
To find : -
Speed ( v ) = ?
Formula : -
v = f x λ
v
= 6 x 12
= 72 m/s
Therefore,
the speed of a wave with a frequency of 6 Hz and a wavelength of 12 m is 72 m/s.