Frequency= velocity of light/wave length
Fr= 3×10^8/510×10^-9
Frequwency=5.88×10^14 Hz
Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.
By Newton's second law,
- the net horizontal force acting on the beam is

where
are the magnitudes of the tensions in ropes 1 and 2, respectively;
- the net vertical force acting on the beam is

where
and
.
Eliminating
, we have





Solve for
.



Answer:

Explanation:
Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:
![F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%2850%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%5Cleft%2815%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D%20%7D%7B2%5Ccdot%20%283000%5C%2Cm%29%7D%20%5Cright%5D)

Explanation:
We have,
Semimajor axis is 
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

G is universal gravitational constant
M is solar mass
Plugging all the values,

Since,

So, the orbital period of a dwarf planet is 138.52 years.
#8 positive kinetic energy