Answer:
The net force acting on the object is doubled while the mass of the object is held constant. What will be the new acceleration? An object has an acceleration of 12.0 m/s^2. The net force acting on the object is halved (decreased to one half its original value) while the mass of the object is held constant.
Answer:
The value is 
Explanation:
From the question we are told that
The velocity which the rover is suppose to land with is
The mass of the rover and the parachute is
The drag coefficient is
The atmospheric density of Earth is 
The acceleration due to gravity in Mars is 
Generally the Mars atmosphere density is mathematically represented as

=> 
=> 
Generally the drag force on the rover and the parachute is mathematically represented as

=>
=>
Gnerally this drag force is mathematically represented as

Here A is the frontal area
So

=> 
=> 
Answer:60 gm
Explanation:
Given
initial velocity of ball 
Force exerted by racquet 
time period of force 
final velocity of ball 
Racquet imparts an impulse to the ball which is given by



Answer:

Explanation:
From the question we are told that:
Mass 
Speed 
Mass 
Speed 
Generally the equation for Magnitude of the Third piece is mathematically given by


Where



And


Therefore


Answer:
12.5 m/s
Explanation:
In a acceleration time graph the area under the curve gives the change in velocity of the object. Here object starts at rest and therefore initial velocity is 0. After 5 seconds acceleration is 5m/s2.
change in velocity=area under the curve
change in velocity= 0.5*acceleration* change in time
v-0=0.5*5*5
v=12.5 m/s