1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
3 years ago
6

To increase the thermal efficiency of a reversible power cycle operating between thermal reservoirs at TH and Tc, would you incr

ease TH while keeping To constant, or decrease To while keeping TH constant? Are there any natural limits on the increase in thermal efficiency that might be achieved by such means? Consider how η responds to a change in temperature-if either temperature is changed by some r, which will have a greater effect? Hint: Check the derivative of η with regard to TH and Tc separately
Engineering
1 answer:
alukav5142 [94]3 years ago
7 0

<u></u>\ T_{c} has greater effect.

<u>Explanation</u>:

\eta_{\max }=1-\frac{T_{c}}{T_{A}}

T_{c}\\ = Temperature of cold reservoir

T_{H} = Temperature of hot reservoir

when T_{c} is decreased by 't',

$\eta_{\text {incre }}$ = 1-\frac{\left(\tau_{c}-t\right)}{T_{H}}

=n \ + \frac{t}{T_{n}}      -(i)

when {T_{H}} is increased by 'T'

\eta_{i n c}=\frac{n+\frac{t}{T_{H}}}{\left(1+\frac{k}{T_{H}}\right)}-(ii)

\eta_{\text {incre }} \ T_{c}>\eta_{\text {incre }} T_{\text {H }}

You might be interested in
The human circulatory system consists of a complex branching pipe network ranging in diameter from
Stels [109]

Answer: the average velocity decreases

Explanation:

From the provided data we have:

Vessel    avg. diameter[mm] number

Aorta                 25.0                   1

Arteries             4.0                    159

Arteioles           0.06                 1.4*10^7

Capillaries         0.012               2.9*10^9

from the information, let \hat{m} be the mass flow rate, \rho is density, n number of vessels, and A is the cross-section area for each vessel

the flow rate is constant so it is equal for all vessels,

The average velocity is related to the flow rate by:

\hat{m} = v* \rho * A * n

we clear the side where v is in:

v = \frac{\hat{m}}{\rho A n}

area is π*R^2 where R is the average radius of the vessel (diameter/2)

we get:

v = \frac{\hat{m}}{\rho \pi R^2 n}

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity

8 0
3 years ago
Visual perception can be improved through perceptual skills development.<br> False<br> True
bogdanovich [222]

Answer:

It's true

Explanation:

I took the quiz a few days ago and got it right!

Hope this helps:)

4 0
3 years ago
Take water density and kinematic viscosity as p=1000 kg/m3 and v= 1x10^-6 m^2/s. (c) Water flows through an orifice plate with a
guapka [62]

Answer:

K_v=12.34

Explanation:

Given;

For orifice, loss coefficient, K₀ = 10

Diameter, D₀ = 45 mm = 0.045 m

loss coefficient of the orifice, Ko = 10

Diameter of the gate valve, Dy = 1.5D₀ = 1.5 × 0.045 m = 0.0675 m

Total head drop, Δhtotal=25 m

Discharge, Q = 10 l/s = 0.01 m³/s

Now,

the velocity of flow through orifice, Vo =   Discharge / area of the orifice

or

Vo = \frac{0.01}{\frac{\pi}{4}0.045^2}

or

Vo = 6.28 m/s

also,

the velocity of flow through gate valve, V_v =   Discharge / area of the orifice

or

V_v = \frac{0.01}{\frac{\pi}{4}0.0675^2}

or

V_v = 2.79 m/s

Now,

the total head drop = head drop at orifice + head drop at gate valve

or

25 m = K_o\frac{V_o^2}{2g}+K_v\frac{V_v^2}{2g}

where,

K_v is the loss coefficient for the gate valve

on substituting the values, we get

25 m = 10\frac{6.28^2}{2\times 9.81}+K_v\frac{2.79^2}{2\times9.81}

or

K_v\frac{2.79^2}{2\times9.81} = 4.898

or

K_v=12.34

3 0
4 years ago
A Gaussian random voltage X volts is input to a half-wave rectifier and the output voltage is Y = Xu (X) Volts were u (x) is the
adelina 88 [10]

Answer:

Please look at attachment carefully.

7 0
4 years ago
You installed a new 40 gallon water heater with a 54,000 BTUh burner. The underground water temperature coming into the house is
allochka39001 [22]

Answer:

For most uses you'll want your water heated to 120 F(49 C) In this example you'd need a demand water heater that produces a temperature rise and it will take about 2 hours

7 0
3 years ago
Other questions:
  • A duct for an air conditioning system has a rectangular cross section of 2ft by 9in. The duct is fabricated from galvanized iron
    9·1 answer
  • A trapezoidal ditch is designed with a bottom width of 3 space f t and side slopes of m equals 1 on both sides. The channel is m
    9·1 answer
  • A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5 kW cooling capacit
    6·1 answer
  • Four of the minterms of the completely specified function f(a, b, c, d) are m0, m1, m4, and m5.
    6·1 answer
  • Whats the best used for Arch bridge
    11·1 answer
  • Using the method of joints, determine the force in each member of the truss shown in the image.
    14·1 answer
  • 3. Assuming a 6V battery to power an LED. The current limiting resistor is 195 ohms. Using the standard maximum current of the c
    11·1 answer
  • when the filament breaks in one lamp in a series circuit, other lamps in the circuit normally _________.
    11·1 answer
  • When the electrical connection to the alternator from the battery is not tight, it can cause?
    7·1 answer
  • Never operate electric tools outdoors or in wet conditions unless circuit is protected by what?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!