Answer:
Attached is the complete question but the weight of the mailbox and cross bar differs from the given values which are : weight of mail box = 3.2 Ib, weight of the uniform cross member = 10.3 Ib
Answer : moment of inertia = 186.7 Ib - in
Explanation:
Given data
weight of the mailbox = 3.2 Ib
weight of the uniform cross member = 10.3 Ib
The origin is of mailbox and cross member is 0
The perpendicular distance from Y axis of centroid of the mailbox
= 4 + (25/2) = 16.5"
The centroid of the bar =( ( 1 + 25 + 4 + 4 ) / 2 ) - 4 = 13"
therefore The moment of Inertia( Mo) = (3.2 * 16.5) + ( 10.3 * 13)
= 52.8 + 133.9 = 186.7 Ib-in
Answer:
45.3 MN
Explanation:
The forging force at the end of the stroke is given by
F = Y.π.r².[1 + (2μr/3h)]
The final height, h is given as h = 100/2
h = 50 mm
Next, we find the final radius by applying the volume constancy law
volumes before deformation = volumes after deformation
π * 75² * 2 * 100 = π * r² * 2 * 50
75² * 2 = r²
r² = 11250
r = √11250
r = 106 mm
E = In(100/50)
E = 0.69
From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula
F = Y.π.r².[1 + (2μr/3h)]
F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]
F = 35.3 * [1 + 0.2826]
F = 35.3 * 1.2826
F = 45.3 MN
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
im sorry but i cant find any studies about this and im 3 days late