1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
2 years ago
15

Write a statement that calls the recursive method backwardsAlphabet() with parameter startingLetter.

Engineering
1 answer:
Tcecarenko [31]2 years ago
6 0

Recursion refers to the act of calling a function itself. With the use of this strategy, complex problems can be reduced to more manageable, simpler ones. Recursion might be a little challenging to comprehend. The best method to figure out how it works is to experiment with it.

<h3>How to write a programme by recursive method ?</h3>

The process of making a function call itself is known as recursion. With the use of this strategy, complex problems can be reduced to more manageable, simpler ones. Recursion might be a little challenging to comprehend. Experimenting with it is the most effective way to learn how it functions.

public class Recursive Calls {

public static void backwards Alphabet(char currLetter) {

if (currLetter == 'a') {

System.out.println(currLetter);

}

else {

System.out.print(currLetter + " ");

backwards Alphabet(--currLetter);

}

return;

}

public static void main (String [] args) {

char starting Letter = '-';

starting Letter = 'z';

// Your solution goes here

backwards Alphabet(starting Letter);

return;

}

}

To learn more about recursive method refer to :

brainly.com/question/24167967

#SPJ4

You might be interested in
Using the celsius_to_kelvin function as a guide, create a new function, changing the name to kelvin_to_celsius, and modifying th
aleksandr82 [10.1K]

Answer:

# kelvin_to_celsius function is defined

# it has value_kelvin as argument

def kelvin_to_celsius(value_kelvin):

   # value_celsius is initialized to 0.0

   value_celsius = 0.0

   

   # value_celsius is calculated by

   # subtracting 273.15 from value_kelvin

   value_celsius = value_kelvin - 273.15

   # value_celsius is returned

   return value_celsius

   

# celsius_to_kelvin function is defined

# it has value_celsius as argument

def celsius_to_kelvin(value_celsius):

   # value_kelvin is initialized to 0.0

   value_kelvin = 0.0

   

   # value_kelvin is calculated by

   # adding 273.15 to value_celsius

   value_kelvin = value_celsius + 273.15

   # value_kelvin is returned

   return value_kelvin

   

value_c = 0.0

value_k = 0.0

value_c = 10.0

# value_c = 10.0 is used to test the function celsius_to_kelvin

# the result is displayed

print(value_c, 'C is', celsius_to_kelvin(value_c), 'K')

value_k = 283.15

# value_k = 283.15 is used to test the function kelvin_to_celsius

# the result is displayed

print(value_k, 'is', kelvin_to_celsius(value_k), 'C')

Explanation:

Image of celsius_to_kelvin function used as guideline is attached

Image of program output is attached.

4 0
3 years ago
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
Can someone help me with this maze shown below.
Gnoma [55]
We can’t see the maze
3 0
3 years ago
Plz solve the problem
julsineya [31]
I attached a photo that explains and gives the answer to your questions. Had to add a border because the whole picture didn’t fit.

6 0
3 years ago
The ice on the rear window of an automobile is defrosted by attaching a thin, transparent, film type heating element to its inne
pshichka [43]

Answer:

A)Q = 1208.33 W/m²

B)K = 0.138 W/m.K

Explanation:

We are given;

inside air temperature;T_∞,i =25 °C = 25 + 273 = 298K

outside air temperature;T_∞,o = -10°C = - 10 + 273 = 263K

Inner surface temperature;T_s,i = 15 °C = 15 + 273 = 288K

Thickness, L = 4mm = 0.004m

convection heat transfer coefficient ; hi = 25 W/(m².K)

A) From an energy balance at the inner surface and the thermal circuit, the electric power required per unit window area is given as;

Q = [(T_s,i - T_∞,o)/((L/k) + (1/hi))] - [(T_∞,o - T_s,i)/(1/hi)]

Plugging in the relevant values with k for glass as 1.4 W/m.k, we have;

Q = [(288 - 263)/((0.004/1.4) + (1/25))] - [(263 - 288)/(1/25)]

Q = 583.33 + 625

Q = 1208.33 W/m²

B) The formula for thermal conductivity is;

K = (QL)/(AΔT)

Where;

K is the thermal conductivity in W/m.K

Q is the amount of heat transferred through the material

L is the distance between the two isothermal planes

A is the area of the surface in square meters

ΔT is the difference in temperature in Kelvin

ΔT = 298K - 263K = 35K

Now, since we have value of heat per unit area to be Q = 1208.33 W/m², let's rearrange the equation to reflect that; Thus ;

k = (Q/A) x (L/ΔT)

K = 1208.33 x (0.004/35)

K = 0.138 W/m.K

5 0
3 years ago
Other questions:
  • When the outside temperature is 5.2 ⁰C, a steel beam of cross-sectional area 52 cm2 is installed in a building with the ends of
    8·1 answer
  • Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with an inlet diameter of 5 cm. At the nozzle
    11·1 answer
  • A pump is used to transport water from a reservoir at one elevation to another reservoir at a higher elevation. If the elevation
    5·1 answer
  • One type of illumination system consists of rows of strip fluorescents and a ceiling that will transmit light. For this system t
    15·1 answer
  • In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
    7·1 answer
  • When trying to solve a frame problem it will typically be necessary to draw many free body diagrams. a)-True b)-False
    6·1 answer
  • The rate at which velocity changes is called?
    5·2 answers
  • The website of a bank that an organization does business with has been reported as untrusted by the organization's web browser.
    12·1 answer
  • Select the correct answer.
    6·1 answer
  • You are the project manager assigned to construct a new 10-story office building. You are trying to estimate the costs for this
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!