1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
2 years ago
15

PLZ! PLZ! PLZ! HELP! WILL GIVE BRAINLIEST! Scientific Claim Engaging in scientific argument is a critical piece to the applicati

on of science and engineering and is necessary to solve a societal problem. Scientific argument is based on evidence and reasoning that leads to explanations. A scientific argument consists of three key pieces: Claim: a conclusion about a problem Evidence: scientific data that is appropriate and sufficient to support the claim. • Reasoning: a justification that shows why the data or information counts as evidence to support the claim and includes appropriate scientific principles 1. What is the claim made by the Big Bang theory regarding the creation of the universe? 2. What are three crucial pieces of evidence that support the claim for the Big Bang theory. Include a piece of evidence that relates each of the following: a. Light spectra b. Motion of distant galaxies c. Composition of matter in the universe 3. Explain how or why each piece of evidence supports the claim made in Big Bang theory.
​
Physics
1 answer:
Nastasia [14]2 years ago
8 0

Answer:

Explanation:

1The study of science and engineering should produce a sense of the process of argument necessary for advancing and defending a new idea or an explanation of a phenomenon and the norms for conducting such arguments. In that spirit, students should argue for the explanations they construct, defend their interpretations of the associated data, and advocate for the designs they propose. (NRC Framework, 2012, p. 73)

Argumentation is a process for reaching agreements about explanations and design solutions. In science, reasoning and argument based on evidence are essential in identifying the best explanation for a natural phenomenon. In engineering, reasoning and argument are needed to identify the best solution to a design problem. Student engagement in scientific argumentation is critical if students are to understand the culture in which scientists live, and how to apply science and engineering for the benefit of society. As such, argument is a process based on evidence and reasoning that leads to explanations acceptable by the scientific community and design solutions acceptable by the engineering community.

Argument in science goes beyond reaching agreements in explanations and design solutions. Whether investigating a phenomenon, testing a design, or constructing a model to provide a mechanism for an explanation, students are expected to use argumentation to listen to, compare, and evaluate competing ideas and methods based on their merits. Scientists and engineers engage in argumentation when investigating a phenomenon, testing a design solution, resolving questions about measurements, building data models, and using evidence to evaluate claims.

Compare and critique two arguments on the same topic and analyze whether they emphasize similar or different evidence and/or interpretations of facts.

Respectfully provide and receive critiques about one’s explanations, procedures, models and questions by citing relevant evidence and posing and responding to questions that elicit pertinent elaboration and detail.

Construct, use, and/or present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Make an oral or written argument that supports or refutes the advertised performance of a device, process, or system, based on empirical evidence concerning whether or not the technology meets relevant criteria and constraints.

Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

You might be interested in
The nearest star to the Earth is the red dwarf star Proxima Centauri, at a distance of 4.218 light-years. Convert this distance
alukav5142 [94]

Explanation:

The nearest star to the Earth is the red dwarf star Proxima Centauri, at a distance of 4.218 light-years.  

Light year is the unit of distance covered by the heavenly bodies. 1 light year is equal to :

1\ light\ year=3.72\times 10^{17}\ inches

So, 4.218\ light\ year=4.218\times 3.72\times 10^{17}\ inches

4.218\ light\ year=1.56\times 10^{18}\ inches

We need to convert 4.218 light-years barley corns.  

Since, 1 barleycorn = 1/3 inch  

1\ inch=3\ barleycorn

1.56\times 10^{18}\ inches=3\times 1.56\times 10^{18}=4.68\times 10^{18}\ barleycorn

So, the nearest star to the Earth is at a distance of 4.68\times 10^{18}\ barleycorn. Hence, this is the required solution.

3 0
3 years ago
Show the equation of simple pendulum to be dimensionally consistent
nataly862011 [7]
T is in seconds (s) 

<span>2pi is dimensionless </span>

<span>L is in meters (m) </span>

<span>g is in meters per second squared (m/s^2) </span>

<span>so you can write the equation for the period of the simple pendulum in its units... </span>

<span>s=sqrt(m/(m/s^2)) </span>

<span>simplify</span>

<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>

<span>s=sqrt(s^2) </span>

<span>s=s </span>

<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
6 0
3 years ago
What is tensile stress?​
Rasek [7]
Tensile strength is the amount of tension a material can hold, at least I hope that’s what it is.
5 0
3 years ago
A certain electromagnetic wave traveling in seawater was observed to have an amplitude of 98.02 (V/m) at a depth of 10 m, and an
maksim [4K]

Answer:

The  value is   \alpha =  0.002 Np/m

Explanation:

From the question we are told that

  The first amplitude of the wave is  E_{max}1 =  98.02 \  V/m

  The first  depth  is  D_1 =  10 \  m

   The second amplitude is  E_{max}2 =  81.87 \  (V/m)

   The second depth is D_2 = 100 \ m

Generally from the spatial wave equation we have

   v(x) =  Ae^{-\alpha d}cos(\beta x  + \phi_o)

=>       \frac{v(x)}{v(x)} =\frac{  Ae^{-\alpha d}cos(\beta x  + \phi_o)}{ Ae^{-\alpha d}cos(\beta x  + \phi_o)}

So considering the ratio of the equation for the  two depth

\frac{A}{A_S}  =  \frac{e^{-D_1 \alpha }}{e^{-D_2 \alpha }}

=>   \frac{98.02}{81.87}  =  \frac{e^{-10 \alpha }}{e^{-100 \alpha }}

=>   \alpha  =  \frac{0.18}{90}

=>    \alpha =  0.002 Np/m

       

4 0
3 years ago
Which among the following statements is correct?
Vinvika [58]

Answer:

C

Explanation:

Velocity is just speed with direction

5 0
3 years ago
Read 2 more answers
Other questions:
  • Un espejo convexo y un cóncavo tienen la misma distancia radial igual a 5m. La separación entre espejos es de 3 veces la distanc
    5·1 answer
  • What distance does the car cover in the first 4.0 seconds of its motion?
    10·1 answer
  • Look at the circuit diagram.
    6·2 answers
  • How many chirps will a snowy tree cricket give is 21 seconds at a temperature of 22 degree celcius
    6·1 answer
  • What are 3 common sources of voltage difference?
    5·1 answer
  • Alpha particles are emitted during the radioactive decay of
    5·1 answer
  • What is the difference in force of a car and a tractor
    10·1 answer
  • A ball rotates on a string as shown below.
    8·1 answer
  • The Law of Conservation of Mass states that mass can be destroyed during a chemical change.
    7·1 answer
  • Plz hep me tell ans of this only​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!