Answer:
P=F/A where F is the weight of the water and A is the area on which it is resting. The weight of the water is mg. The mass of the water is dv where d is the density and v is the volume. Finally, the volume of the water in a vessel is equal to the area of the base of the vessel times the height of the vessel. (v=Ah)
Plugging everything in we get:
P = dAhg/A
So
P=dhg
So we have shown that liquid pressure is directly proportional to height of liquid in a vessel.
Answer:
The power dissipated in a resistor is 117.54 watts.
Explanation:
Given that,
Peak voltage of the Ac generator, V = 230 V
Frequency, f = 210 Hz
Resistance, R = 225 ohms
We need to find the power dissipated in a resistor. The power generated is given by :


So,

So, the power dissipated in a resistor is 117.54 watts. Hence, this is the required solution.
Answer:
Specific heat
Explanation:
The specific heat is the amount of heat, that is energy in transfer to or from a thermodynamic system, required to raise the temperature of 1 g of substance by one degree Celsius or one Kelvin, since one degree on the Celsius scale is equal to one Kelvin.
Answer:
a. 37.75°
b. 6.21 m
Explanation:
a. The horizontal force acting on a pendulum bob is given as:
F = mgsinθ
where m = mass of bob
g = acceleration due to gravity
θ = angle string makes with the vertical or angle of displacement
Making θ subject of formula, we have:
θ = 
θ = 
θ = 37.75°
The maximum angle of displacement is 37.75°
b. Period of a pendulum is given as:

where L = length of string
Therefore, making L subject of formula:


The string holding the pendulum has to be 6.21 m long.