The correct answer to the question is : 9375 N.
CALCULATION:
As per the question, the mass of the car m = 1500 Kg.
The diametre of the circular track D = 200 m.
Hence, the radius of the circular path R = 
= 
= 100 m.
The velocity of the truck v = 25 m/s.
When a body moves in a circular path, the body needs a centripetal force which helps the body stick to the orbit. It acts along the radius and towards the centre.
Hence, the force acting on the car is centripetal force.
The magnitude of the centripetal force is calculated as -
Force F = 
= 
= 9375 N. [ANS}
The centripetal force is provided to the car in two ways. It is the friction which provides the necessary centripetal force. Sometimes friction is not sufficient. At that time, the road is banked to some extent which provides the necessary centripetal force.
Lunar phase is the same wherever on Earth you observe
<span>Last (third) quarter rises at midnight, sets at noon. </span>
<span>First quarter rises at noon, sets at midnight</span>
Answer:
a) and c).
Explanation:
For a complete destructive interference occur, it must be met the following condition relating the wavelength, and the difference in the paths taken by the sound emitted by the sources until arriving to the listening point:
d = |dA- dB| = (2n-1)*(λ/2)
For n= 1, d = λ/2 = 0.25 m, it doesn't meet any of the cases.
For n=2, d= 3*(λ/2) = 0.75 m
In the case a) we have dA = 2.15 m and dB = 3.00 m, so dB-dA = 0.75 m, which means that in the location stated by case a) a complete destructive interference would occur.
For n=3, d= 5*(λ/2) = 5*0.25 m = 1.25 m.
This is just the case c) because we have dA = 3.75 m and dB = 2.50 m, so dA-dB = 1.25 m, which means that in the location stated by case c) a complete destructive interference would occur also.
The remaining cases don't meet the condition stated above, so the statements found to be true are a) and c),
Using a basking spot so some sort of heated object, for example heating lamp or heating pad.