1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
4 years ago
6

he atomic radii of Li and O2- ions are 0.068 and 0.140 nm, respectively. (a) Calculate the force of attraction in newtons betwee

n these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another). (b) What is the force of repulsion at this same separation distance
Physics
1 answer:
Crazy boy [7]4 years ago
6 0

Answer:

a

 F =  -1.07 *10^{-8} \  N

b

F_r  =  1.07 *10^{-8} \  N

Explanation:

Generally the force of attraction between this two irons is mathematically represented as

F =  \frac{k *  [Q_{Li}  ] * [Q_{O}  ]  }{ r^2}

Here k is known as the proportionality constant with value k = 2.31  *  10^ {-28} J \cdot m

substituting -2 for Q_{O} i.e the charge on oxygen , +1 for Q_{Li} i.e the charge on Lithium and [0.140 + 0.068 ] nm= 0.208 nm =  0.208*10^{-9} for r

So

F =  \frac{ 2.31  *  10^ {-28}*  +1   * -2   }{ ( 0.208*10^{-9} )^2   }

F =  -1.07 *10^{-8} \  N

Generally the force of repulsion will be the magnitude but different direction to the force o attraction

So Force of repulsionn is

F_r  =  1.07 *10^{-8} \  N

You might be interested in
Glass is transparent to visibile light under normal conditions; however, at extremely high intensities, glass will absorb most o
8_murik_8 [283]

Answer:

3 photons

Explanation:

The energy of a photon E can be calculated using this formula:

E=\frac{hc}{\lambda}

Where h corresponds to Plank constant (6.626070x10^-34Js), c is the speed of light in the vacuum (299792458m/s) and \lambda is the wavelength of the photon(in this case 800nm).

E=\frac{hc}{\lambda}=\frac{(6.626070\times10^{-34})(299792458)}{800\times10^{-9}}=\frac{1.986445812\times10^-25}{800}=2.483057265\times10^{-19}J

Tranform the units

1eV=1.602176634\times10^{-19}J\\2.483057265\times10^{-19}J(\frac{1eV}{1.602176634\times10^{-19}J})=1.549802445eV

The band Gap is 4eV, divide the band gap between the energy of the photon:

\frac{4ev}{1.549802445eV}=2.508974118

Rounding to the next integrer: 3.

Three photons are the minimum to equal or exceed the band gap.

4 0
3 years ago
The SI system uses three base units. Question 6 options: True False
GalinKa [24]

Answer:

The answer is false

Explanation:

Though the mostly used SI unit of measurement or the most popular units are the

Length,

Time and

Mass

i.e meter (m), seconds (s), kilogram (kg)

Aside all the above stated units for measurements there are other four basic units which are itemized  bellow.

they are

1. Amount of substance - mole (mole)

2. Electric current - ampere (A)

3. Temperature - kelvin (K)

4. Luminous intensity - candela (cd)

6 0
3 years ago
Calculate the average drift speed of electrons traveling through a copper wire with a crosssectional area of 80 mm2 when carryin
Vedmedyk [2.9K]

Answer:

The correct answer is 2.8*10^{-5}ms^{-1}

Explanation:

The formula for the electron drift speed is given as follows,

u=I/nAq

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.

Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is 8.93/63.5 molcm^{-3}. Converting this number to m³ using very elementary unit conversion we get 140384molm^{-3}. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

n=140384*6.02*10^{23} = 8.45*10^{28}electrons.m^{-3}

if we convert the area from mm³ to m³ we get A=80*10^{-6}m^{2}.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

u=30/(8.45*10^{28}*80*10^{-6}*1.602*10^{-19})\\u=2.8*10^{-5}m.s^{-1}

which is our final answer.

6 0
3 years ago
The bending of light as it passes into a transparent material of different optical intensity is known as A. conversion. B. aberr
stiks02 [169]

Answer:

<em>D. refraction</em>

Explanation:

Refraction: Refraction is change in direction of light rays. Refraction occurs whenever light rays travels from a transparent medium to another transparent medium of different density. The abrupt change in direction at the surface of the surface of the two media is referred to as <em>refraction</em><em>.</em>

<em>Refraction occurs when light travels from air to glass or from air to liquid.</em>

<em>Laws Of Refraction:</em>

(i) The incident ray, the refracted ray and the normal, all at the point of incident lies in the same plane.

(ii) The ratio of the sine of the angle of incident to the sine of the angle of refraction is a constant for a given pair of media.

<em>Thus the right option is D. refraction</em>

6 0
3 years ago
gas has a volume of 185 ml and pressure of 310 mm hg. The desiered volume is 74.0 ml. What is the required new pressure
Mamont248 [21]

Answer:

The required new pressure is 775 mm hg.

Explanation:

We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.

We have to find the required new pressure.

Let the required new pressure be '\text{P}_2'.

As we know that Boyle's law formula states that;

                    P_1 \times V_1 = P_2 \times V_2

where, P_1 = original pressure of gas in the container = 310 mm hg

           P_2 = required new pressure

            V_1 = volume of gas in the container = 185 ml

            V_2 = desired new volume of the gas = 74 ml

So,  P_2 = \frac{P_1 \times V_1}{V_2}  

       P_2 = \frac{310 \times 185}{74}

            =  775 mm hg

Hence, the required new pressure is 775 mm hg.

7 0
3 years ago
Other questions:
  • Could you guys tell me whether the photo represents a balanced or unbalanced equation​
    11·1 answer
  • According to the kinetic theory, all matter is composed of _______.
    11·2 answers
  • What is the main difference between the Schrödinger model and the Bohr atomic model?
    8·1 answer
  • Select the correct answer.
    8·1 answer
  • You are exploring a newly discovered planet. The radius of the planet is 7.50 × 107 m. You suspend a lead weight from the lower
    5·1 answer
  • Why is it more helpful to know a tornadoes velocity rather than its speed
    14·2 answers
  • A toy car moves 8 m in 4 s at the constant velocity. whats the car's velocity?
    13·2 answers
  • What is the velocity of an object that has been in free fall for 0.10 s?
    8·1 answer
  • A thin disk of mass 2.2 kg and radius 61.2 cm is suspended by a horizonal axis perpendicular to the disk through its rim. The di
    15·1 answer
  • When starting a foot race, a 64 kilogram sprinter exerts an average force of 693 newtons backward on the ground for 0.59 seconds
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!