<h3>Answer:</h3>
100 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 2 mol CH₄
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CH₄ → 2 mol O₂
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
128 g O₂ ≈ 100 g O₂
Answer:
Pure Water
Explanation:
The common ion effect describes the effect on equilibrium that occurs when a common ion (an ion that is already contained in the solution) is added to a solution. The common ion effect generally decreases solubility of a solute(Khan Academy).
NaCl, AgNO3, KCl, BaCl2 solutions all have a common ion with AgCl. As a result of this, AgCl will be much less soluble in these solvents than it is in pure water.
Therefore, AgCl will have the highest solubility in pure water compared to all the solutions listed above.
d= 8/10 so yah that was a guess
4.67 is the right answer
+ − − log(7,5 ∗ 10−3) − log(6.2 ∗ 10−8) ,34 ,24
= 2 = 2 =4.67
0.022
One milliliter is equal to a thousandth of a liter, so divide by 1000..