1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
7

What is the time period of vibration?

Physics
1 answer:
Y_Kistochka [10]2 years ago
4 0

Answer:

A time period is denoted by 'T' . It is the time to complete one cycle of vibration. As the frequency of a wave increases, the time period of the wave decreases. The unit for time period is 'seconds

HOPE IT HELPS :)

PLEASE MARK  IT THE BRAINLIEST!

You might be interested in
Help plz i have until 4.20 plz
Setler [38]

Answer:

Substance 1 because it became a liquid faster

Explanation:

8 0
2 years ago
Read 2 more answers
Newton began his academic career in 1667 for how long was he a working scientists was he a very productive scientist
taurus [48]
Newton was given the title "scientist" when he was given the Merit Badge at the age of 15. He continued to work in the field of science, and was considered a scientist until his death at the age of 84. That is a total of 69 years of work. Hope this helps!
6 0
2 years ago
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
What is a particulate ? Name a couple of examples.
Nikitich [7]

Answer:Particulates are small, distinct solids suspended in a liquid or gas and example are dust,soot,and salt particles

Explanation:

3 0
2 years ago
A plate carries a charge of 3.8 UC, while a rod carries a charge of 1.9 C. How many electrons must be transferred from the plate
frosja888 [35]

Answer:

N_{electrons}=Q_{transfered}/q_{electron}=5.94*10^{18}electrons

Explanation:

The total charge is distributed over the two objects:

Q_{total}/2=(3.8*10^{-6}C+1.9C)/2=0.9500019C\\

The plate and the rod must have Q_{total}/2\\. So the charge transferred from the plate to the rod is:

Q_{transfered}=3.8*10^{-6}C-Q_{total}/2=3.8*10^{-6}C-0.9500019C=-0.9499981C\\

Number of electrons:

N_{electrons}=Q_{transfered}/q_{electron}=-0.9499981C/(-1.6*10^{-19}C)=5.94*10^{18}electrons

4 0
2 years ago
Other questions:
  • Which of the following is a result of a change in pressure? A. Frost wedging B. Chemical feathering C. Oxidation D. Exfoliation
    9·1 answer
  • Are you ready for a brain twister? murphy can row at 5 kmph in still water. if the velocity of current is 1 kmph and it takes hi
    5·1 answer
  • What is latent heat? A. energy released or absorbed to change the kinetic energy of a substance B. energy released or absorbed t
    6·2 answers
  • Pressure increases with depth towards the center of earth. In which layer would you expect pressure to be the greatest.
    10·2 answers
  • Use complete sentences to describe an extra-solar (exo) planet
    12·2 answers
  • Which best explains parrallel forces
    12·1 answer
  • Being talked into volunteering in a homeless shelter is an example of negative peer pressure. Please select the best answer from
    14·2 answers
  • Rooted plants are most likely found in which aquatic zone?
    11·1 answer
  • A 5.83 kg object is released from rest while fully submerged in a liquid. The liquid displaced by the submerged object has a mas
    5·1 answer
  • A car drives 16 miles south and then 12 miles west. What is the magnitude of the car's displacement?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!