Answer:
The rise in height of combined block/bullet from its original position is 0.45m
Explanation:
Given;
mass of bullet, m₁ = 12 g = 0.012 kg
mass of block of wood, m₂ = 1 kg
initial speed of bullet, u₁ = 250 m/s.
initial speed of block of wood, u₂ = 0
From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.
m₁u₁ + m₂u₂ = v(m₁+m₂)
where;
v is the final speed of the combined block/bullet system.
0.012 x 250 + 0 = v (0.012 + 1)
3 = v (1.012)
v = 3/1.012
v = 2.96 m/s
From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.
¹/₂mv² = mgh
¹/₂v² = gh
¹/₂ (2.96)² = (9.8)h
4.3808 = 9.8h
h = 4.3808/9.8
h = 0.45 m
Therefore, the rise in height of combined block/bullet from its original position is 0.45m
Answer:
La frecuencia cardíaca objetivo durante las actividades de intensidad moderada es aproximadamente del 50 al 70% de la frecuencia cardíaca máxima, mientras que durante la actividad física intensa es de, aproximadamente, entre el 70 y el 85% del valor máximo.
Answer:
Number of turns per unit length will be 
Explanation:
We have given that strength of the magnetic field produced by the solenoid B = 7 T
Current in the solenoid i = 200 A
Let the number of turns per unit length is n
Magnetic field due to solenoid is given as
here
is permeability of free space n is number of turns per unit length and i is current
So 

Answer:
Voltage across the capacitor is 30 V and rate of energy across the capacitor is 0.06 W
Explanation:
As we know that the current in the circuit at given instant of time is
i = 2.0 mA
R = 10 k ohm
now we know by ohm's law



so voltage across the capacitor + voltage across resistor = V


Now we know that

here rate of change in energy of the capacitor is given as



Answer:
just divide 22 N by 20 kg to get the acceleration in m/s2
Explanation:
I hope this is right-