The amount of heat lost by granite is equal to the amount
of heat gained by water. Therefore their change in enthalpies must be equal.
The opposite in sign means that one is gaining while the other is losing
ΔH granite = - ΔH water
ΔH is the change in enthalpy experienced by a closed object
as it undergoes change in energy. This is expressed mathematically as,
ΔH = m Cp (T2 – T1)
Given this information, we can say that:
12.5 g * 0.790 J / g ˚C * (T2 – 82 ˚C) =
- 25.0 g * 4.18 J / g ˚C
* (T2 – 22 ˚C)
9.875 (T2 – 82) = 104.5 (22 – T2)
9.875 T2 – 809.75 = 2299 – 104.5 T2
114.375 T2 = 3108.75
T2 = 27.18 ˚C
The temperature of 2 objects after reaching thermal
equilibrium is 27.18 ˚<span>C.</span>
STEM is an acronym meaning
Science
Technology
Engineering
Mathematics
One of the main focuses of STEM courses is on science, so you will be learning about various types of science
This is an approach at learning to have students learn all four types of subjects in one class, based on real world applications.
What amount of heat absorbs 50 g of steel (ce = 0.115 cal / g. ° C) that
does its temperature vary by 25 ° C?
Answer:
143.75cal
Explanation:
Given parameters:
Mass of steel = 50g
Specific heat capacity of the steel = 0.115cal/g°C
Temperature = 25°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat to cause this temperature change is dependent on mass and specific heat capacity of the substance.
Amount of heat = m C (ΔT)
m is the mass
c is the specific heat capacity
ΔT is the temperature change
Now insert the parameters and solve;
Amount of heat = 50 x 0.115 x 25
Amount of heat = 143.75cal
Answer:
The warmer, lighter air rises, bringing cooler, heavier air to low altitudes.
Air at higher altitudes doesn't have as much air weighing down on it from above.
Explanation:
In short - air pressure is the result of the cumulative force that air molecules act on objects below them due to Earth's gravity. The higher the altitude, the less air molecules there are to act a force below them, and therefore, there's less air pressure at higher altitudes.
<u>Answer:</u> The atomic symbol of the given element is 
<u>Explanation:</u>
The general isotopic representation of an element is given as: 
where,
Z represents the atomic number of the element
A represents the mass number of the element
X represents the symbol of an element
For the given isotope: 130-iodine
Mass number = 130
Atomic number = 53
Hence, the atomic symbol of the given element is 