Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ
An o ring intended for use in a hydraulic system using MIL-H-5606 (mineral base) fluid will be marked with a blue stripe or dot.
Answer:
Hence, the three effects of electric current are heating effect, magnetic effect and chemical effect.
Answer:
critical stress = 595 MPa
Explanation:
given data
fracture toughness = 74.6 MPa-
crack length = 10 mm
f = 1
solution
we know crack length = 10 mm
and crack length = 2a as given in figure attach
so 2a = 10
a = 5 mm
and now we get here with the help of plane strain condition , critical stress is express as
critical stress =
......................1
put here value and we get
critical stress =
critical stress = 595 MPa
so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.
plain stress condition occur in thin body where stress through thickness not vary by the thinner section.
Answer:
1. Measure the temperature of the boxes and leave them unconnected.
2. Norton reduces his circuit down to a single resistance in parallel with a constant current source. A real-life Norton equivalent circuit would be continuously wasting power (as heat) as the current source dumps energy into the resistor, even when externally unconnected, while a Thevenin equivalent circuit would sit there doing nothing.
3. The Norton equivalent box would get warm and eventually run out of power. The Thevenin equivalent box would stay at ambient temperature.