1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
7

A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5

mm in the tube, making a contact angle of 15°. Determine the surface tension of the liquid.
Engineering
1 answer:
geniusboy [140]3 years ago
7 0

Answer:

a 9mm dimeter tube is inserted into un known whose density is 960kg/m3 and it is obsered that the liquid rises 5mm inthe tube,making a contact angle of15. determin the surface tention of the fluid.

Explanation:

You might be interested in
"A communication between two devices is over the maximum limit of an ethernet frame size. The Transmission Control Protocol (TCP
Sliva [168]

COmmunication Devices

Explanation:

  • TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a suite of communication protocols used to interconnect network devices on the internet. TCP/IP can also be used as a communications protocol in a private network (an intranet or an extranet).

  • The sequence number in a header is used to keep track of which segment out of many this particular segment might be. The next field, the acknowledgment number, is a lot like the sequence number. The acknowledgment number is the number of the next expected segment.

  • The 32 bit sequence number field defines the number assigned to the first byte of data contained in this segment. TCP is a stream transport protocol. To ensure connectivity, each byte to be transmitted is numbered.
3 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De
andreyandreev [35.5K]

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

3 0
3 years ago
An alternating current E(t) =120 sin(12t) has been running through a simple circuit for a long time. The circuit has an inductan
german

Answer:

Explanation:

we have given E(t)=120 sin(12t)

R=5 ohm

L=0.2 H

ω=12 ( from expression of E)

X_L=0.2\times 12=2.4 ohm

X_C=\frac{1}{\omega \times C}=\frac{1}{12\times 0.043}=1.9379\ ohm

Z=\sqrt{R^2+\left ( \omega L-\frac{1}{\omega C} \right )^2}

Z=\sqrt{5^2+\left ( \2.4-1.9379 )^2}

=5.021 ohm

so amplitude of current =  \frac{v}{z}=\frac{120}{5.021}=23.89

4 0
3 years ago
If the bending moment (M) is 4,176 ft-lb and the beam is an 1 beam, calculate the bending stress (psi) developed at a point with
SpyIntel [72]

Answer:

Bending stress at point 3.96 is \sigma_b = 1.37 psi

Explanation:

Given data:

Bending Moment M is 4.176 ft-lb = 50.12 in- lb

moment of inertia I = 144 inc^4

y = 3.96 in

\sigma_b = \frac{M}{I} \times y

putting all value to get bending stress

\sigma_b = \frac{50.112}{144} \times 3.96  

\sigma_b =  1.37 psi

Bending stress at point 3.96 is \sigma_b = 1.37 psi

3 0
4 years ago
Other questions:
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • What type of companies would employ in mechanics engineering​
    8·1 answer
  • 11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
    9·1 answer
  • According to the eNotes, a program that eliminates sales and promotions in an effort to minimize the bullwhip effect would be ca
    13·1 answer
  • What are the 2 reasons an alignment should be done?
    13·1 answer
  • Milk has a density of as much as 64.6 lb/ft3. What is the gage pressure at the bottom of the straw 6.1 inches deep in the milk?
    7·1 answer
  • QUESTION:
    13·1 answer
  • Conclusion. What process is responsible for the bubbling action of the organism? What is your evidence?
    13·1 answer
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!