1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
7

A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5

mm in the tube, making a contact angle of 15°. Determine the surface tension of the liquid.
Engineering
1 answer:
geniusboy [140]3 years ago
7 0

Answer:

a 9mm dimeter tube is inserted into un known whose density is 960kg/m3 and it is obsered that the liquid rises 5mm inthe tube,making a contact angle of15. determin the surface tention of the fluid.

Explanation:

You might be interested in
A liquid jet vj of diameter dj strikes a fixed cone and deflects back as a conical sheet at the same velocity. find the cone ang
dmitriy555 [2]

Answer:

lol i cant real it sorry

Explanation:

7 0
2 years ago
The input and output signals of a system is related by the following equation: fraction numerator d squared y over denominator d
Colt1911 [192]

Answer:

Explanation:

The given equation is :

\frac{d^{2}y }{dx^{2} } + sin(3y) \frac{dy}{dt} + y = t\frac{df}{dt} + f

5 0
3 years ago
What do you mean by searching?​
nikitadnepr [17]

Answer:

thoroughly scrutinizing, especially in a disconcerting way.

Explanation:

8 0
4 years ago
What is the perimeter of 14-7 and 3-4
Goshia [24]

Answer:

If you mean two sides are 7 and two sides are 14 then you'd have 42

and for the second you'd have 14

Explanation:

7 + 7 = 14, 14 + 14 = 28, 14 + 28 = 42

3 + 3 = 6, 4 + 4 = 8, 8 + 6 = 14

5 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
Other questions:
  • True or False: Drag and tailwind are examples of a contact force.<br> tyy guyss
    14·1 answer
  • CNG is a readily available alternative to
    5·1 answer
  • Technician A says that most states will allow landfills to dispose of whole tires with a permit. Technician B says that landfill
    5·1 answer
  • Air expands through an ideal turbine from 1 MPa, 900 K to 0.1 MPa, 500K. The inlet velocity is small compared to the exit veloci
    10·1 answer
  • 3. (9 points) A square-thread power screw is used to raise or lower the basketball board in a gym, the weight of which is W = 10
    12·1 answer
  • 8. Which of the following is a characteristic of no-till farming?
    8·1 answer
  • An atom that gained an electron is called​
    10·2 answers
  • Which is the correct way of dual dimensioning using the position method
    7·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
  • What happens if you leave your car on while pumping gas
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!