It would have to be the right type of metal like copper to run through it
The equation relevant to this is:
S(t) = So + Vot - At²/2 <span>
</span>
<span>Therefore
we can create two equations:
<span>S(t) = 90 = So - 4t - 16.1t² -->
eqtn 1</span>
<span>S(t+2) = 10 = So - 4(t+2) - 16.1(t+2)² --> eqtn 2</span>
</span>
<span>Expanding
eqtn 2:
10 = So - 4t - 8 - 16.1(t² + 4t + 4)
10 = So - 4t - 8 - 16.1t² - 64.4t - 64.4
10 + 8 + 64.4 = So - 68.4t - 16.1t²
<span>82.4 = So - 68.4t - 16.1t² -->
eqtn 3</span></span>
<span>
Subtracting eqtn 1 by eqtn 3:</span>
90 = So - 4t - 16.1t²
82.4 = So - 68.4t - 16.1t²
=> 7.6 = 64.4t
t = 0.118 s
Therefore calculating for initial height So:<span>
<span>82.4 = So - 68.4(0.118) - 16.1(0.118)²
<span>So = 90.7 ft</span></span></span>
Answer:
D. 0.9
Explanation:
Calculating minimum coefficient of static friction, we first resolve the forces (normal and frictional) acting on the vehicle at an angle to the horizontal into their x and y components. After this, we can now substitute the values of x and y components into equation of static friction. Diagrammatic illustration is attached.
Resolving into x component:
∑
------(1)
Resolving into y component:
∑
------(2)
Static frictional force,
μ
------(3)
substituting
from equation (1) and
from equation (2) into equation (3)
μ
μ
μ 
μ 
The angle the vehicles make with the horizontal α = 42°
μ ≥ tan 42°
μ ≥ 0.9
Answer:

Explanation:
The Law of Conservation of Mass states that mass cannot be created or destroyed.
So, in a chemical reaction, the mass before a reaction and after cannot be different. In other words, the mass of the products must be equal to the product of the reactants.
So, this is a <u>true statement.</u>
<span>The distance is estimated to be about 150 million kilometers</span>