Answer:
During those 3.00 seconds before stopping, the car travels a distance of 6 m.
Explanation:
The simple rule of three is a tool that is used to quickly solve problems, where three pieces of information must be known, and one of them operates as an unknown to be known.
Two magnitudes are directly proportional if one magnitude increases the other also does it, and if the magnitude decreases the other in the same way.
Being a, b and c known data and x the unknown, the value that we want to know, the rule of three when the magnitudes are directly proportional is applied as follows:
a ⇒ b
c ⇒ x
So: 
In this case, knowing that a truck travels at 2 m/s, the rule of three applies as follows: if in 1 second the truck travels 2 m, in 3 seconds how much distance does it travel?

distance= 6 m
<u><em>
During those 3.00 seconds before stopping, the car travels a distance of 6 m.</em></u>



_________________________________
If west means the west of the axis x the velocity equal :

Explanation:
An electrified comb is charged comb ( let say by running it through the hair) and when it is brought in the proximity of pieces of paper, the pieces tend to cling to it. This happens because the charged comb induces an opposite charge in the paper pieces and as opposite charges attract each other, the pieces are clinged.
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N