The second one, air is a poor conductor. If it weren't it wouldn't be used as such in construction. It's not the best insulator, but is quite efficient, and much cheaper to include a layer of air inside a wall than to add additional layers of asbestos :)
To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Answer:
heterogeneous and homogeneous
Explanation:
Hetero you can separate whilst homo is combined and cant be separated
Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
D. Light from the sun is reflected off the moon's surface